Search results for "NMR"
showing 10 items of 1575 documents
Theoretical insights on the importance of anchoring vs molecular geometry in magnetic molecules acting as junctions
2019
The anchoring of the molecule to an electrode is known to be a key factor in single-molecule spintronics experiments. Likewise, a relaxation down to the most stable geometry is a critical step in theoretical simulations of transport through single-molecule junctions. Herein we present a set of calculations designed to analyze and compare the effect of different anchoring points and the effect of perturbations in the molecular geometry and interelectrode distance. As model system we chose the [V($\alpha$-C$_3$S$_5$)$_3$]$^{2-}$ complex connecting two Au(111) electrodes in a slightly compressed geometry. In our calculations, the attachment happens through an S-Au bond, a common anchoring stra…
Epitaxial growth of perovskite oxide films facilitated by oxygen vacancies
2021
The authors would like to thank P. Yudin for valuable discussions, N. Nepomniashchaia for VASE studies, and S. Cichon for XPS analysis. The authors acknowledge support from the Czech Science Foundation (Grant No. 19-09671S), the European Structural and Investment Funds and the Ministry of Education, Youth and Sports of the Czech Republic through Programme ‘‘Research, Development and Education’’ (Project No. SOLID21 CZ.02.1.01/0.0/0.0/16-019/0000760), and ERA NET project Sun2Chem (E. K. and L. R.). Calculations have been done on the LASC Cluster in the ISSP UL.
Stabilization of primary mobile radiation defects in MgF2 crystals
2016
Abstract Non-radiative decay of the electronic excitations (excitons) into point defects ( F – H pairs of Frenkel defects) is main radiation damage mechanism in many ionic (halide) solids. Typical time scale of the relaxation of the electronic excitation into a primary, short-lived defect pair is about 1–50 ps with the quantum yield up to 0.2–0.8. However, only a small fraction of these primary defects are spatially separated and survive after transformation into stable, long-lived defects. The survival probability (or stable defect accumulation efficiency) can differ by orders of magnitude, dependent on the material type; e.g. ∼10% in alkali halides with f.c.c. or b.c.c. structure, 0.1% in…
Raman spectra and anomalies of dielectric properties and thermal expansion of lead-free (1−x)Na0.5Bi0.5TiO3-xSrTiO3 (x = 0, 0.08 and 0.1) ceramics
2016
ABSTRACTThermal expansion, Raman and dielectric properties of the lead-free (1−x)Na0.5Bi0.5TiO3-xSrTiO3 (x = 0, 0.08 and 0.1) ceramic solid solutions, fabricated by the conventional solid-state reaction method, were investigated. The Sr-doping results in an increase of the dielectric permittivity, broadening of the permittivity maximum, enhancement of the relaxation near depolarization temperature, broadening of the Raman bands and shift of all anomalies toward lower temperatures. The observed effects are attributed to an increase of the degree of cationic disorder and enhancement of the relaxor-like features. Anomalies in the thermal expansion strain were observed at the temperatures corre…
Time-resolved photoisomerization of 1,1′-di-tert-butylstilbene and 1,1′-dicyanostilbene
2016
Abstract Photoisomerization of 1,1′-di-tert-butylstilbene ( 3 ) and 1,1′-dicyanostilbene ( 4 ) is monitored with stationary and broadband transient absorption spectroscopy. The electron affinity of the substituents correlates with the shift of the absorption band. The weak extinction of 3 complicates data interpretation, but comparison with earlier measured 1,1′-dimethylstilbene ( 1 ) and 1,1′-diethylstilbene ( 2 ) helps to assign transient spectra and relaxation paths. For 3 a long-lived perpendicular state P is observed with lifetime τ P = 134 ps in acetonitrile. For 4 τ P = 2.1 ps in acetonitrile and 27 ps in n-hexane, the difference indicating a substantial dipole moment (∼3D) of the …
Effect of molecular Stokes shift on polariton dynamics
2021
When the enhanced electromagnetic field of a confined light mode interacts with photoactive molecules, the system can be driven into the regime of strong coupling, where new hybrid light-matter states, polaritons, are formed. Polaritons, manifested by the Rabi split in the dispersion, have shown potential for controlling the chemistry of the coupled molecules. Here, we show by angle-resolved steady-state experiments accompanied by multi-scale molecular dynamics simulations that the molecular Stokes shift plays a significant role in the relaxation of polaritons formed by organic molecules embedded in a polymer matrix within metallic Fabry-Pérot cavities. Our results suggest that in the case …
NMR T1-Relaxation Measurements on Paramagnetic Organolanthanides: An Alternative Tool for Structure Determination in Solution
2005
1H NMR investigations were conducted on four paramagnetic organolanthanides, all bearing the tetraisopropylcyclopentadienyl ligand Cp4i (HC5iPr4) in order to verify whether or not interactions observed in the solid state are maintained in solution. In some cases variable-temperature experiments were necessary to enhance the resolution and determine the best conditions for the study. The 1D NMR spectrum could be interpreted in every case. Complementary 2D COSY experiments allowed the full attribution of the signals. T1 (1H) relaxation values were determined for all the paramagnetic complexes at the most suitable temperature, and compared with those of the diamagnetic KCp4i. The same tendency…
Switching of Slow Magnetic Relaxation Dynamics in Mononuclear Dysprosium(III) Compounds with Charge Density
2016
The symmetry around a Dy ion is recognized to be a crucial parameter dictating magnetization relaxation dynamics. We prepared two similar square-antiprismatic complexes, [Dy(LOMe)2(H2O)2](PF6) (1) and Dy(LOMe)2(NO3) (2), where LOMe = [CpCo{P(O)(O(CH3))2}3], including either two neutral water molecules (1) or an anionic nitrate ligand (2). We demonstrated that in this case relaxation dynamics is dramatically affected by the introduction of a charged ligand, stabilizing the easy axis of magnetization along the nitrate direction. We also showed that the application of either a direct-current field or chemical dilution effectively stops quantum tunneling in the ground state of 2, thereby increa…
Chemical shift reagents in the study of polycyclic alcohols IX—1H NMR spectra of myrtenol and some other primary alcohols
1974
Structure proof of (—)-myrtenol, 3-cyclopentenyl-1-methanol and 5-norbornene-2-endo-methanol has been obtained from their proton magnetic resonance spectra in carbon tetrachloride containing different added amounts of tris(dipivaloylmethanato)europium. For each alcohol, a 1:1 complex structure with Eu(dpm)3 could be computed, in which the calculated pseudocontact shift effects on all skeleton protons of the ring system were consistent with the observed shift effect values. A considerable contact contribution of opposite sign to that of the pseudocontact part of the effect could be estimated for the methylene protons of the CH2OH group.
Cis- and trans molybdenum oxo complexes of a prochiral tetradentate aminophenolate ligand : Synthesis, characterization and oxotransfer activity
2020
Abstract Reaction of [MoO2Cl2(dmso)2] with the tetradentate O2N2 donor ligand papy [H2papy = N-(2-hydroxybenzyl)-N-(2-picolyl)glycine] leads to formation of the dioxomolybdenum(VI) complex [MoO2(papy)] (1) as a mixture of cis and trans isomers. Recrystallization from methanol furnishes solid cis-1, whereas the use of a dichloromethane-hexane mixture allows for the isolation of the trans-1 isomer. Both isomers have been structurally characterized by X-ray crystallography and the energy difference between the isomeric pair has been investigated by electronic structure calculations. Optimization of two configurational isomers in the gas phase predicts the trans isomer to lie 2.5 kcal/mol lower…