Search results for "NON-MUSICIANS"
showing 3 items of 3 documents
It's Sad but I Like It The Neural Dissociation Between Musical Emotions and Liking in Experts and Laypersons
2016
Emotion-related areas of the brain, such as the medial frontal cortices, amygdala, and striatum, are activated during listening to sad or happy music as well as during listening to pleasurable music. Indeed, in music, like in other arts, sad and happy emotions might co-exist and be distinct from emotions of pleasure or enjoyment. Here we aimed at discerning the neural correlates of sadness or happiness in music as opposed those related to musical enjoyment. We further investigated whether musical expertise modulates the neural activity during affective listening of music. To these aims, 13 musicians and 16 non-musicians brought to the lab their most liked and disliked musical pieces with a …
Dynamic Functional Connectivity in the Musical Brain
2019
Musical training causes structural and functional changes in the brain due to its sensory-motor demands. This leads to differences in how musicians perceive and process music as compared to non-musicians, thereby providing insights into brain adaptations and plasticity. Correlational studies and network analysis investigations have indicated the presence of large-scale brain networks involved in the processing of music and have highlighted differences between musicians and non-musicians. However, studies on functional connectivity in the brain during music listening tasks have thus far focused solely on static network analysis. Dynamic Functional Connectivity (DFC) studies have lately been …
Influence of Musical Expertise on the processing of Musical Features in a Naturalistic Setting
2019
Musical training causes structural and functional changes in the brain due to its sensory-motor demands, but the modulatory effect of musical training on music feature processing in the brain in a continuous music listening paradigm, has not been investigated thus far. In this work, we investigate the differences between musicians and non-musicians in the encoding of musical features encompassing musical timbre, rhythm and tone. 18 musicians and 18 non-musicians were scanned using fMRI while listening to 3 varied stimuli. Acoustic features corresponding to timbre, rhythm and tone were computationally extracted from the stimuli and correlated with brain responses, followed by t-tests on grou…