Search results for "NUCLEOSYNTHESIS"

showing 10 items of 141 documents

Big-bang nucleosynthesis and the relic abundance of dark matter in a stau-neutralino coannihilation scenario

2008

A scenario of the Big-Bang Nucleosynthesis is analyzed within the Minimal Supersymmetric Standard Model which is consistent with a stau-neutralino coannihilation scenario to explain the relic abundance of dark matter. We find that we can account for the possible descrepancy of the abundance of $\mathrm{^{7}Li}$ between the observation and the prediction of the Big-Bang Nucleosynthesis by taking the mass of the neutralino as $300 \mathrm{GeV}$ and the mass difference between the stau and the neutralino as $(100 -- 120) MeV$. We can therefore simultaneously explain the abundance of the dark matter and that of $\mathrm{^{7}Li}$ by these values of parameters. The lifetime of staus in this scena…

PhysicsNuclear and High Energy PhysicsParticle physicsAstrophysics (astro-ph)High Energy Physics::PhenomenologyDark matterFOS: Physical sciencesSupersymmetryAstrophysicsStandard ModelHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Big Bang nucleosynthesisNucleosynthesisNeutralinoAstrophysics::Solar and Stellar AstrophysicsHigh Energy Physics::ExperimentLight dark matterAstrophysics::Galaxy AstrophysicsMinimal Supersymmetric Standard ModelPhysical Review D
researchProduct

Reevaluation of theP30(p,γ)S31astrophysical reaction rate from a study of theT=1/2mirror nuclei,S31andP31

2006

The $^{30}\mathrm{P}$($p,\ensuremath{\gamma}$)$^{31}\mathrm{S}$ reaction rate is expected to be the principal determinant for the endpoint of nucleosynthesis in classical novae. To date, the reaction rate has only been estimated through Hauser-Feschbach calculations and is unmeasured experimentally. This paper aims to remedy this situation. Excited states in $^{31}\mathrm{S}$ and $^{31}\mathrm{P}$ were populated in the $^{12}\mathrm{C}$($^{20}\mathrm{Ne}$,$n$) and $^{12}\mathrm{C}$($^{20}\mathrm{Ne}$,$p$) reactions, respectively, at a beam energy of 32 MeV, and their resulting $\ensuremath{\gamma}$decay was detected with the Gammasphere array. Around half the relevant proton unbound states …

PhysicsNuclear and High Energy PhysicsProtonNucleosynthesisExcited stateCarbon-12GammaspherePhosphorus-31 NMR spectroscopyMirror nucleiAtomic physicsNuclear ExperimentMirror symmetryPhysical Review C
researchProduct

THE R-PROCESS: SUPERNOVAE AND OTHER SOURCES OF THE HEAVIEST ELEMENTS

2007

Rapid neutron capture in stellar explosions is responsible for the heaviest elements in nature, up to Th , U and beyond. This nucleosynthesis process, the r-process, is unique in the sense that a combination of nuclear physics far from stability (masses, half-lives, neutron-capture and photodisintegration, neutron-induced and beta-delayed fission and last but not least neutrino-nucleus interactions) is intimately linked to ejecta from astrophysical explosions (core collapse supernovae or other neutron star related events). The astrophysics and nuclear physics involved still harbor many uncertainties, either in the extrapolation of nuclear properties far beyond present experimental explorat…

PhysicsNuclear and High Energy PhysicsAstrophysics::High Energy Astrophysical PhenomenaNuclear TheoryGeneral Physics and AstronomyAstronomyAstrophysicsNeutron starSupernovaNeutron captureStarsNucleosynthesisPhotodisintegrationAstrophysics::Solar and Stellar Astrophysicsr-processNeutronNuclear ExperimentAstrophysics::Galaxy AstrophysicsInternational Journal of Modern Physics E
researchProduct

A CMB search for the neutrino mass mechanism and its relation to the Hubble tension

2020

AbstractThe majoron, a pseudo-Goldstone boson arising from the spontaneous breaking of global lepton number, is a generic feature of many models intended to explain the origin of the small neutrino masses. In this work, we investigate potential imprints in the cosmic microwave background (CMB) arising from massive majorons, should they thermalize with neutrinos after Big Bang Nucleosynthesis via inverse neutrino decays. We show that measurements of the CMB are currently sensitive to neutrino-majoron couplings as small as $$\lambda \sim 10^{-13}$$λ∼10-13, which if interpreted in the context of the type-I seesaw mechanism correspond to a lepton number symmetry breaking scale $$v_L \sim {\math…

PhysicsParticle physicsPhysics and Astronomy (miscellaneous)010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaCosmic microwave backgroundHigh Energy Physics::Phenomenologylcsh:AstrophysicsType (model theory)01 natural sciencesLepton numberComputer Science::Digital LibrariesSeesaw mechanismBig Bang nucleosynthesislcsh:QB460-4660103 physical scienceslcsh:QC770-798lcsh:Nuclear and particle physics. Atomic energy. RadioactivityHigh Energy Physics::ExperimentSymmetry breakingNeutrino010306 general physicsEngineering (miscellaneous)MajoronEuropean Physical Journal
researchProduct

Mass Measurement on the rp-Process Waiting Point 72Kr

2004

The mass of one of the three major waiting points in the astrophysical rp process $^{72}$Kr was measured for the first time with the Penning trap mass spectrometer ISOLTRAP. The measurement yielded a relative mass uncertainty of $\deltam/m = 1.2\times 10–7 (\deltam$ = 8 keV). $^{73,74}$Kr, also needed for astrophysical calculations, were measured with more than 1 order of magnitude improved accuracy. We use the ISOLTRAP masses of $^{72–74}$Kr to reanalyze the role of $^{72}$Kr (T$_{1/2}$ = 17.2 s) in the rp process during x-ray bursts and conclude that $^{72}$Kr is a strong waiting point delaying the burst duration with at least 80\% of its $\beta$-decay half-life.

PhysicsNuclear and High Energy PhysicsLarge Hadron Collider26.30.+k 21.10.Dr 27.50.+e 32.10.Bi010308 nuclear & particles physicsHadronrp-process[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Mass spectrometryPenning trap01 natural sciencesISOLTRAPnuclei with mass number 59 to 89particle trapsNuclear physicsnuclear massNucleosynthesis0103 physical sciencesNuclear fusionNuclear Physics - Experimentnucleon-nucleus reactions010306 general physicsNuclear Experimentbeta-decayNuclear Physics
researchProduct

rp-process nucleosynthesis at extreme temperature and density conditions

1998

We present nuclear reaction network calculations to investigate the influence of nuclear structure on the rp-process between Ge and Sn in various scenarios. Due to the lack of experimental data for neutron-deficient nuclei in this region, we discuss currently available model predictions for nuclear masses and deformations as well as methods of calculating reaction rates (Hauser-Feshbach) and beta-decay rates (QRPA and shell model). In addition, we apply a valence nucleon (NpNn) correlation scheme for the prediction of masses and deformations. We also describe the calculations of 2p-capture reactions, which had not been considered before in this mass region. We find that in X-ray bursts 2p-c…

PhysicsNuclear reactionNuclear physicsNucleosynthesisNuclear TheoryNuclear structureGeneral Physics and Astronomyp-Nucleirp-processNuclear ExperimentNucleonISOLTRAPp-process
researchProduct

The chemical signature of jet-driven hypernovae

2020

Hypernovae powered by magnetic jets launched from the surface of rapidly rotating millisecond magnetars are one of the leading models to explain broad-lined Type Ic supernovae (SNe Ic-BL), and have been implicated as an important source of metal enrichment in the early Universe. We investigate the nucleosynthesis in such jet-driven hypernovae using a parameterised, but physically motivated, approach that analytically relates an artificially injected jet energy flux to the power available from the energy in differential rotation in the proto-neutron star. We find ejected $^{56}\mathrm{Ni}$ masses of $0.05\,\mathrm{M}_\odot - 0.45\,\mathrm{M}_\odot$ in our most energetic models with explosion…

High Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsType (model theory)01 natural sciencesInterstellar mediumSupernovaStars13. Climate actionSpace and Planetary ScienceNucleosynthesis0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaHypernovaEjecta010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsEnergy (signal processing)Monthly Notices of the Royal Astronomical Society
researchProduct

The Astrophysicalr‐Process: A Comparison of Calculations following Adiabatic Expansion with Classical Calculations Based on Neutron Densities and Tem…

1999

The rapid neutron-capture process (r-process) encounters unstable nuclei far from β-stability. Therefore its observable features, like the abundances, witness (still uncertain) nuclear structure as well as the conditions in the appropriate astrophysical environment. With the remaining lack of a full understanding of its astrophysical origin, parameterized calculations are still needed. We consider two approaches: (1) the classical approach is based on (constant) neutron number densities nn and temperatures T over duration timescales τ; (2) recent investigations, motivated by the neutrino wind scenario from hot neutron stars after a supernova explosion, followed the expansion of matter with …

Nuclear reactionPhysicsNeutron starSupernovaSpace and Planetary ScienceNucleosynthesisr-processAstronomy and AstrophysicsNeutronObservableAstrophysicsNeutrinoThe Astrophysical Journal
researchProduct

ALMA spectral survey of Supernova 1987A – molecular inventory, chemistry, dynamics and explosive nucleosynthesis

2017

We report the first molecular line survey of Supernova 1987A in the millimetre wavelength range. In the ALMA 210--300 and 340--360 GHz spectra, we detected cold (20--170 K) CO, 28SiO, HCO+ and SO, with weaker lines of 29SiO from ejecta. This is the first identification of HCO+ and SO in a young supernova remnant. We find a dip in the J=6--5 and 5--4 SiO line profiles, suggesting that the ejecta morphology is likely elongated. The difference of the CO and SiO line profiles is consistent with hydrodynamic simulations, which show that Rayleigh-Taylor instabilities cause mixing of gas, with heavier elements much more disturbed, making more elongated structure. We obtained isotopologue ratios of…

CIRCUMSTELLAR RINGMetallicityLINE EMISSIONINFRARED WATER-VAPORFOS: Physical sciencesAstrophysics01 natural sciences7. Clean energySpectral lineISM [radio lines]CORE-COLLAPSE SUPERNOVAENucleosynthesis0103 physical sciencesIsotopologueEjectaSupernova remnantLarge Magellanic CloudCARBON-MONOXIDE010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)molecules [ISM]QBHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsabundances [ISM]010308 nuclear & particles physicssupernova remnants [ISM]II-P SUPERNOVAEAstronomyindividual: Supernova 1987A [supernovae]NEBULA M 1-92Astronomy and AstrophysicsSupernovaAstrophysics - Solar and Stellar AstrophysicsPhysics and Astronomy13. Climate actionSpace and Planetary ScienceLARGE-MAGELLANIC-CLOUDAstrophysics - High Energy Astrophysical PhenomenaMASSIVE STARSSN 1987AMonthly Notices of the Royal Astronomical Society
researchProduct

Nucleosynthesis in magneto-rotational supernovae

2020

Abstract We present the nucleosynthesis of magneto-rotational supernovae (MR-SNe) including neutrino-driven and magneto-rotational-driven ejecta based, for the first time, on two-dimensional simulations with accurate neutrino transport. The models analysed here have different rotation and magnetic fields, allowing us to explore the impact of these two key ingredients. The accurate neutrino transport of the simulations is critical to analyse the slightly neutron rich and proton rich ejecta that are similar to the, also neutrino-driven, ejecta in standard supernovae. In the model with strong magnetic field, the r-process produces heavy elements up to the third r-process peak (A ∼ 195), in agr…

High Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics01 natural sciencesGalaxySupernovaStarsNeutron starSpace and Planetary ScienceNucleosynthesis0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsNeutrinoEjectaHypernovaAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics
researchProduct