Search results for "Nanochannels"

showing 2 items of 2 documents

Oligophenylenevinylenes in Spatially Confined Nanochannels: Monitoring Intermolecular Interactions by UV/Vis and Raman Spectroscopy

2008

Perhydrotriphenylene-based channel-forming inclusion compounds (ICs) and thin films made of polyphenylenevinylene (PPV)-type oligomers with terminal alkoxy groups are investigated and compared in a combined experimental and theoretical approach. Interchromophore interactions and host-guest interactions are elucidated by UV/Vis and Raman spectroscopy. The impact of the local environment of the chromophore on the optical and photophysical properties is discussed in light of quantum-chemical calculations. In stark contrast to thin films where preferential side-by-side orientation leads to quenching of photoluminescence (PL) via non-emissive traps, the ICs are found to be attractive materials f…

Quenching (fluorescence)Materials sciencePhotoluminescenceIntermolecular forceAnalytical chemistryChromophoreCondensed Matter PhysicsPhotochemistryElectronic Optical and Magnetic MaterialsBiomaterialssymbols.namesakeUltraviolet visible spectroscopynanochannels inclusion compoundsElectrochemistryAlkoxy groupsymbolsThin filmRaman spectroscopyFIS/03 - FISICA DELLA MATERIA
researchProduct

Physics of the nuclear pore complex: Theory, modeling and experiment

2021

Abstract The hallmark of eukaryotic cells is the nucleus that contains the genome, enclosed by a physical barrier known as the nuclear envelope (NE). On the one hand, this compartmentalization endows the eukaryotic cells with high regulatory complexity and flexibility. On the other hand, it poses a tremendous logistic and energetic problem of transporting millions of molecules per second across the nuclear envelope, to facilitate their biological function in all compartments of the cell. Therefore, eukaryotes have evolved a molecular “nanomachine” known as the Nuclear Pore Complex (NPC). Embedded in the nuclear envelope, NPCs control and regulate all the bi-directional transport between the…

Stochastic transportMolecular modelingGeneral Physics and AstronomyComputational biologyMolecular dynamics01 natural sciencesGenomeArticleDiffusionNanochannels0103 physical sciencesotorhinolaryngologic diseasesmedicineNuclear pore010306 general physicsPhysicsComputational modelIntrinsically disordered proteins010308 nuclear & particles physicsCompartmentalization (psychology)Nuclear pore complexCell nucleusCrowdingmedicine.anatomical_structureCytoplasmMultivalencyBiomimeticNucleusFunction (biology)Physics Reports
researchProduct