Search results for "Nanocrystalline material"

showing 10 items of 126 documents

Formation of anodic films on sputtering-deposited Al–Hf alloys

2009

Abstract The growth of barrier-type anodic films at high efficiency on a range of sputtering-deposited Al–Hf alloys, containing from 1 to 95 at.% Hf, has been investigated in ammonium pentaborate electrolyte. The alloys encompassed nanocrystalline and amorphous structures, the latter being produced for alloys containing from 26 to 61 at.% Hf. Except at the highest hafnium content, the films were amorphous and contained units of HfO 2 and Al 2 O 3 distributed relatively uniformly through the film thickness. Boron species were confined to outer regions of the films. The boron distributions suggest that the cation transport number decreases progressively with increasing hafnium concentration i…

Materials sciencebiologyGeneral Chemical EngineeringAlloyMetallurgyAnalytical chemistrychemistry.chemical_elementengineering.materialHafniabiology.organism_classificationNanocrystalline materialAmorphous solidHafniumSettore ING-IND/23 - Chimica Fisica ApplicatachemistrySputteringElectrochemistryengineeringBoronCation transportAl-Hf alloys anodic films high k material
researchProduct

Hybrid molecular materials for optoelectronic devices

2005

Hybrid molecular materials based on semiconductor nanocrystalline metal oxides are a subject of intense research for the development of optoelectronic devices. Such devices follow the strategy of combining high surface area mesoporous materials with optically and electrochemically active molecules. Photovoltaic devices, molecular sensors and biosensors are some of the examples discussed in this paper.

Materials sciencebusiness.industryPhotovoltaic systemNanotechnologyGeneral ChemistryNanocrystalline materialSemiconductorMaterials ChemistryOptoelectronicsHigh surface areaMolecular materialsbusinessMesoporous materialBiosensorJournal of Materials Chemistry
researchProduct

Formation of surface roughness on nanocrystalline aluminum samples under straining by molecular dynamics studies

2006

International audience; The surface roughening of nanocrystalline aluminum samples was investigated by molecular dynamics simulations. Attention was focused on the fact that roughness increases with the grain size and the strain. The elastic-plastic transition was found at around 3.5% strain and a reverse Hall-Petch effect was observed under straining conditions. Then, different strain distributions in grains and grain boundaries at the samples surface was highlighted, yielding to the formation of local roughness. Finally, a linear relationship between the magnitude of roughness and the out-of-plane strain component was found.

Materials scienceeducationchemistry.chemical_elementSurface finishCondensed Matter PhysicsGrain sizeNanocrystalline materialCrystallographychemistryAluminiumPhysical SciencesSurface roughnessGrain boundaryComposite materialGrain boundary strengtheningPlane stress
researchProduct

Nanotribological, nanomechanical and interfacial characterization of atomic layer deposited TiO2 on a silicon substrate

2015

Abstract For every coating it is critical that the coatings are sufficiently durable to withstand practical applications and that the films adhere well enough to the substrate. In this paper the nanotribological, nanomechanical and interfacial properties of 15–100 nm thick atomic layer deposited (ALD) TiO 2 coatings deposited at 110–300 °C were studied using a novel combination of nanoscratch and scanning nanowear testing. Thin film wear increased linearly with increasing scanning nanowear load. The film deposited at 300 °C was up to 58±11 %-points more wear-resistant compared to the films deposited at lower temperatures due to higher hardness and crystallinity of the film. Amorphous/nanocr…

Materials sciencenanoindentationta221NanotechnologySubstrate (electronics)Nanomechanical characterizationengineering.materialnanomachiningAtomic layer depositionScanning nanowearCoatingMaterials ChemistryTiO2Composite materialThin filmta216ta214ta114Atomic layer depositionNanotribologySurfaces and InterfacesCondensed Matter PhysicsNanoscratchNanocrystalline materialSurfaces Coatings and FilmsAmorphous solidInterfacial characterizationthin filmsMechanics of MaterialsengineeringCrystalliteLayer (electronics)Wear
researchProduct

Modification of Nanocrystalline WO3 with a Dicationic Perylene Bisimide: Applications to Molecular Level Solar Water Splitting

2015

[(N,N?-Bis(2-(trimethylammonium)ethylene) perylene 3,4,9,10-tetracarboxylic acid bisimide)(PF6)2] (1) was observed to spontaneously adsorb on nanocrystalline WO3 surfaces via aggregation/hydrophobic forces. Under visible irradiation (? > 435 nm), the excited state of 1 underwent oxidative quenching by electron injection (kinj > 108 s-1) to WO3, leaving a strongly positive hole (Eox ? 1.7 V vs SCE), which allows to drive demanding photo-oxidation reactions in photoelectrochemical cells (PECs). The casting of IrO2 nanoparticles (NPs), acting as water oxidation catalysts (WOCs) on the sensitized electrodes, led to a 4-fold enhancement in photoanodic current, consistent with hole transfer from …

Models MolecularMolecular ConformationNanoparticleImidesPhotochemistryBiochemistryTungstenCatalysisNOCatalysiElectron Transportchemistry.chemical_compoundColloid and Surface ChemistryTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITYWO3ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONperylenePhotoelectrochemical cellIrO2Quenching (fluorescence)Chemistry (all)charge transferWaterOxidesGeneral ChemistryPhotoelectrochemical cellPhotochemical ProcessesSolar fuelChemistry (all); Catalysis; Biochemistry; Colloid and Surface ChemistryNanocrystalline materialperylene WO3 charge transfer IrO2MicrosecondchemistryWater SplittingSunlightVISIBLE-LIGHT; ARTIFICIAL PHOTOSYNTHESIS; PHOTOELECTROCHEMICAL CELL; OXIDATION CATALYSTS; ELECTRON-TRANSFER; FABRICATIONNanoparticlesPerylene bisimideWater splittingPeryleneMathematicsofComputing_DISCRETEMATHEMATICS
researchProduct

EXAFS and XANES analysis of oxides at the nanoscale

2014

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence.

Nanocrystalline materialsX-ray absorption spectroscopyExtended X-ray absorption fine structureAbsorption spectroscopyChemistryOxide nanomaterialsNanotechnologyGeneral ChemistryMagnetic semiconductorCondensed Matter PhysicsFeature ArticlesBiochemistryXANESXANESNanocrystalline materialNanomaterialsEXAFSlcsh:QGeneral Materials Sciencelcsh:ScienceSpectroscopyIUCrJ
researchProduct

Orthogonal Ambipolar Semiconductor Nanostructures for Complementary Logic Gates.

2016

We report orthogonal ambipolar semiconductors that exhibit hole and electron transport in perpendicular directions based on aligned films of nanocrystalline "shish-kebabs" containing poly(3-hexylthiophene) (P3HT) and N,N'-di-n-octyl-3,4,9,10-perylenetetracarboxylic diimide (PDI) as p- and n-type components, respectively. Polarized optical microscopy, scanning electron microscopy, and X-ray diffraction measurements reveal a high degree of in-plane alignment. Relying on the orientation of interdigitated electrodes to enable efficient charge transport from either the respective p- or n-channel materials, we demonstrate semiconductor films with high anisotropy in the sign of charge carriers. Fi…

Organic electronicsMaterials sciencebusiness.industryAmbipolar diffusionGeneral EngineeringGeneral Physics and AstronomyNAND gate02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesNanocrystalline material0104 chemical sciencesNoise marginSemiconductorLogic gateOptoelectronicsGeneral Materials ScienceCharge carrier0210 nano-technologybusinessACS nano
researchProduct

Recent progress in high pressure X-ray absorption spectroscopy studies at the ODE beamline

2020

I.J. and A.K. are grateful to the Latvian Council of Science project no. lzp-2018/2-0353 for financial support. The research leading to these results has been partially supported by the project CALIPSOplus under the Grant Agreement No. 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020.

Phase transitionMaterials scienceAbsorption spectroscopyFOS: Physical sciencesReverse Monte Carlo010502 geochemistry & geophysics01 natural sciencesDiamond anvil celllaw.inventionlaw0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]010306 general physicsComputingMilieux_MISCELLANEOUS0105 earth and related environmental sciences[PHYS]Physics [physics]X-ray absorption spectroscopyCondensed Matter - Materials ScienceMaterials Science (cond-mat.mtrl-sci)Condensed Matter PhysicsSynchrotronNanocrystalline materialXANESEXAFSHigh pressureBeamlinenano-polycrystalline diamond anvil cellAtomic physics
researchProduct

Compressibility and structural behavior of pure and Fe-doped SnO2 nanocrystals

2017

We have performed high-pressure synchrotron X-ray diffraction experiments on nanoparticles of pure tin dioxide (particle size ~30nm) and 10 mol % Fe-doped tin dioxide (particle size ~18nm). The structural behavior of undoped tin dioxide nanoparticles has been studied up to 32 GPa, while the Fe-doped tin dioxide nanoparticles have been studied only up to 19 GPa. We have found that both samples present at ~13 GPa a second-order structural phase transition from the ambient pressure tetragonal rutile-type structure (P42/mnm) to an orthorhombic CaCl2-type structure (space group Pnnm). No phase coexistence was observed for this transition. Additionally, pure SnO2 presents a phase transition to a …

Phase transitionMaterials scienceCiencias FísicasAnalytical chemistry02 engineering and technology010402 general chemistry01 natural sciencesTetragonal crystal systemchemistry.chemical_compoundGeneral Materials ScienceTin DioxideBulk modulusTin dioxideGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsNanocrystalline materialX-ray diffraction0104 chemical sciencesAstronomíaCrystallographychemistryX-ray crystallographyOrthorhombic crystal system0210 nano-technologyCIENCIAS NATURALES Y EXACTASHigh PressureAmbient pressureSolid State Sciences
researchProduct

Lattice dynamics study of nanocrystalline yttrium gallium garnet at high pressure

2014

This work reports an experimental and theoretical lattice dynamics study of nanocrystalline Y3Ga5O12 (YGG) garnet at high pressures. Raman scattering measurements in nanocrystalline Tm3+-doped YGG garnet performed up to 29 GPa have been compared to lattice dynamics ab initio calculations for bulk garnet carried out up to 89 GPa. Good agreement between the theoretical vibrational modes of bulk crystal and the experimental modes measured in the nanocrystals is found. The contribution of GaO4 tetrahedra and GaO6 octahedra to the different phonon modes of YGG is discussed on the basis of the calculated total and partial phonon density of states. Symmetries, frequencies, and pressure coefficient…

Phase transitionMaterials sciencePhononchemistry.chemical_elementCondensed Matter::Materials Sciencesymbols.namesakeElectronic-PropertiesAb initio quantum chemistry methodsCondensed Matter::SuperconductivityPhysical and Theoretical ChemistryGalliumY3AL5o12Condensed matter physicsTemperatureYttriumNanocrystalline materialSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCrystallographyGeneral EnergychemistryMolecular vibrationFISICA APLICADAsymbolsPhononsCondensed Matter::Strongly Correlated ElectronsRaman scatteringAluminum
researchProduct