Search results for "Nanoparticles"
showing 10 items of 1286 documents
Antibacterial Activity of Positively and Negatively Charged Hematite (α-Fe2O3) Nanoparticles to Escherichia coli, Staphylococcus aureus and Vibrio fi…
2021
This research and work has been supported by the European Regional Development Fund within the Activity 1.1.1.2 “Post-doctoral Research Aid” of the Specific Aid Objective 1.1.1 (i.e., “to increase the research and innovative capacity of scientific institutions of Latvia and the ability to attract external financing, investing in human resources and infrastructure”) of the Operational Programme “Growth and Employment” (No. 1.1.1.2/VIAA/2/18/331).
[Ag67(SPhMe2)32(PPh3)8]3+: Synthesis, Total Structure, and Optical Properties of a Large Box-Shaped Silver Nanocluster
2016
Engineering the surface ligands of metal nanoparticles is critical in designing unique arrangements of metal atoms. Here, we report the synthesis and total structure determination of a large box-shaped Ag67 nanocluster (NC) protected by a mixed shell of thiolate (2,4-dimethylbenzenethiolate, SPhMe2) and phosphine (triphenylphosphine, PPh3) ligands. Single crystal X-ray diffraction (SCXRD) and electrospray ionization mass spectrometry (ESI-MS) revealed the cluster formula to be [Ag67(SPhMe2)32(PPh3)8]3+. The crystal structure shows an Ag23 metal core covered by a layer of Ag44S32P8 arranged in the shape of a box. The Ag23 core was formed through an unprecedented centered cuboctahedron, i.e.,…
Adsorption and Activation of Water on Cuboctahedral Rhodium and Platinum Nanoparticles
2017
Rh and Pt are widely used as the components in heterogeneous catalysts for multiple industrial applications. Because the metals are typically in the form of nanoparticles in real catalysts, it is important to carefully select models for the computational prediction of the catalytic properties. Here we report a first-principles study on the water activation, an important step in numerous catalytic reactions, using the finite-size Rh and Pt nanoparticle models and compare them to the extended surface models. We show that regardless of the model, adsorption and activation of water is practically identical for both metals, whereas the dissociation is energetically more favorable on Rh. The expe…
Addressing Complexity in Science|Environment|Health Pedagogy
2019
This paper aims to discuss complexity as a key feature for understanding the role of science knowledge in environmental and health contexts—a central issue in Science|Environment|Health pedagogy. Complex systems are, in principle, not predictable. In different contexts, ephemeral mechanisms produce different, sometimes completely unexpected results. The art of decision-making in complex contexts is to take scientific knowledge into account but to interpret its meaning in terms of concrete complex contexts. This is illustrated by four empirical studies on Science|Environment|Health issues, presented midway through this paper. The findings underscore the importance of introducing complexity i…
Effect of Core–Shell Rubber Nanoparticles on the Mechanical Properties of Epoxy and Epoxy-Based CFRP
2022
This research was funded by M-Era.Net project MERF “Matrix for carbon reinforced epoxy laminates with reduced flammability” grant No. 1.1.1.5/ERANET/20/04 from the Latvian State Education Development Agency and M-Era.Net project “EPIC—European Partnership for Improved Composites“ funded by grant No. TH06020001. A.S., K.S. and A.Z. are grateful to funding received from the European Union Horizon 2020 Framework program H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2.
Formation of Si/SiO2 Luminescent Quantum Dots From Mesoporous Silicon by Sodium Tetraborate/Citric Acid Oxidation Treatment
2019
We propose a rapid, one-pot method to generate photoluminescent (PL) mesoporous silicon nanoparticles (PSiNPs). Typically, mesoporous silicon (meso-PSi) films, obtained by electrochemical etching of monocrystalline silicon substrates, do not display strong PL because the silicon nanocrystals (nc-Si) in the skeleton are generally too large to display quantum confinement effects. Here we describe an improved approach to form photoluminescent PSiNPs from meso-PSi by partial oxidation in aqueous sodium borate (borax) solutions. The borax solution acts to simultaneously oxidize the nc-Si surface and to partially dissolve the oxide product. This results in reduction of the size of the nc-Si core …
Decagram-Scale Synthesis of Multicolor Carbon Nanodots: Self-Tracking Nanoheaters with Inherent and Selective Anticancer Properties
2022
Carbon nanodots (CDs) are a new class of carbon-based nanoparticles endowed with photoluminescence, high specific surface area, and good photothermal conversion, which have spearheaded many breakthroughs in medicine, especially in drug delivery and cancer theranostics. However, the tight control of their structural, optical, and biological properties and the synthesis scale-up have been very difficult so far. Here, we report for the first time an efficient protocol for the one-step synthesis of decagram-scale quantities of N,S-doped CDs with a narrow size distribution, along with a single nanostructure multicolor emission, high near-infrared (NIR) photothermal conversion efficiency, and sel…
Photobleaching and Recovery Kinetics of a Palette of Carbon Nanodots Probed by In Situ Optical Spectroscopy
2022
Carbon dots (CDs) are a family of fluorescent nanoparticles displaying a wide range of interesting properties, which make them attractive for potential applications in different fields like bioimaging, photocatalysis, and many others. However, despite many years of dedicated studies, wide variations exist in the literature concerning the reported photostability of CDs, and even the photoluminescence mechanism is still unclear. Furthermore, an increasing number of recent studies have highlighted the photobleaching (PB) of CDs under intense UV or visible light beams. PB phenomena need to be fully addressed to optimize practical uses of CDs and can also provide information on the fundamental m…
Polyphenols Epigallocatechin Gallate and Resveratrol, and Polyphenol-Functionalized Nanoparticles Prevent Enterovirus Infection through Clustering an…
2021
To efficiently lower virus infectivity and combat virus epidemics or pandemics, it is important to discover broadly acting antivirals. Here, we investigated two naturally occurring polyphenols, Epigallocatechin gallate (EGCG) and Resveratrol (RES), and polyphenol-functionalized nanoparticles for their antiviral efficacy. Concentrations in the low micromolar range permanently inhibited the infectivity of high doses of enteroviruses (107 PFU/mL). Sucrose gradient separation of radiolabeled viruses, dynamic light scattering, transmission electron microscopic imaging and an in-house developed real-time fluorescence assay revealed that polyphenols prevented infection mainly through clustering of…
Dual Enzyme-Triggered Controlled Release on Capped Nanometric Silica Mesoporous Supports
2012
The development of nanoscopic hybrid materials equipped with “molecular gates” showing the ability of releasing target entrapped guests upon the application of an external trigger has attracted great attention and has been extensively explored during recent years.1 These nanodevices are composed of two subunits, namely, a suitable support and certain capping entities grafted on the surface of the scaffolding.2 The support is used as a suitable reservoir in which certain chemicals can be stored whereas the molecules grafted in the outer surface act as a “gate” and can control the release of the entrapped molecules at will. Both components are carefully selected and arranged in order to achie…