Search results for "Nanophotonics"
showing 10 items of 68 documents
Ultrastrong Coupling of a Single Molecule to a Plasmonic Nanocavity: A First-Principles Study
2022
| openaire: EC/H2020/838996/EU//RealNanoPlasmon Funding Information: We acknowledge financial support from the Swedish Research Council (VR Miljö, Grant No: 2016-06059), the Knut and Alice Wallenberg Foundation (Grant No: 2019.0140), the Polish National Science Center (projects 2019/34/E/ST3/00359 and 2019/35/B/ST5/02477). T.P.R. acknowledges support from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. 838996 and support from the Academy of Finland under the Grant No. 332429. T.J.A. acknowledges support from the Project HPC-EUROPA3 (INFRAIA-2016-1-730897), with the support of the EC Research Innovation Action under the H…
In-plane remote photoluminescence excitation of carbon nanotube by propagating surface plasmon
2012
International audience; In this work, we demonstrate propagating surface plasmon polariton (SPP) coupled photoluminescence (PL) excitation of single-walled carbon nanotube (SWNT). SPPs were launched at a few micrometers from individually marked SWNT, and plasmon-coupled PL was recorded to determine the efficiency of this remote in-plane addressing scheme. The efficiency depends upon the following factors: (i) longitudinal and transverse distances between the SPP launching site and the location of the SWNT and (ii) orientation of the SWNT with respect to the plasmon propagation wave vector (k(SPP)). Our experiment explores the possible integration of carbon nanotubes as a plasmon sensor in p…
Ultrafast dynamics of adenine following XUV ionization
2022
JPhys photonics 4, 034003 (2022). doi:10.1088/2515-7647/ac6ea5 special issue: "Focus on Nanophotonics and Biophotonics for Biomedical and Environmental Applications"
Electrical control of the nonlinear properties of plasmonic nanostructures
2020
This work brings nano-electronics and nano-photonics technologies together to create an electron- plasmon device whose linear and nonlinear optical properties are electrically controlled. Here, we present the first demonstration of nonlinear photoluminescence modulation by electrical means in an uncluttered configuration. To this purpose, plasmonic nanoantennas are interfaced with elec- trical connections inducing localized regions of electron accumulation and depletion and therefore affecting the optical response. Additionally, a complete analysis of the nonlinear photoluminescence in plasmonic nanowires is carried out. The delocalization and transport of nonlinearities provided by such st…
Efficient surface plasmon field confinement in one-dimensional crystal line-defect waveguides
2006
International audience; The authors operate a near-field optical microscope to investigate surface plasmon polariton (SPP) propagation along linear waveguides opened into one-dimensional (1D) plasmonic crystals, i.e., crystals featuring a single lattice plane orientation. They show that efficient SPP field confinement can be achieved by this type of waveguide although no band gap exists in the direction perpendicular to the waveguide axis. From computed wave-vector diagrams, they show that 1D plasmonic crystals can open a wide range of prohibited propagation directions preventing from a significant coupling of the waveguide SPP modes with the crystal Bloch modes. Finally, the authors demons…
Propagation of Dyakonon Wave-Packets at the Boundary of Metallodielectric Lattices
2013
We rigorously analyze the propagation of localized surface waves that takes place at the boundary between a semi-infinite layered metal-dielectric (MD) nanostructure cut normally to the layers and a isotropic medium. It is demonstrated that Dyakonov-like surface waves (also coined dyakonons) with hybrid polarization may propagate in a wide angular range. As a consequence, dyakonon-based wave-packets (DWPs) may feature sub-wavelength beamwidths. Due to the hyperbolic-dispersion regime in plasmonic crystals, supported DWPs are still in the canalization regime. The apparent quadratic beam spreading, however, is driven by dissipation effects in metal. This work was supported by the Spanish Mini…
Measuring the magnetic dipole transition of single nanorods by spectroscopy and Fourier microscopy
2020
International audience; Rare-earth doped nanocrystals possess optical transitions with significant either electric or magnetic dipole characters. They are of considerable interest for understanding and engineering light-matter interactions at the nanoscale with numerous applications in nanophotonics. Here, we study the 5 D 0 → 7 F 1 transition dipole vector in individual NaYF 4 : Eu 3+ nanorod crystals by Fourier and confocal micro-scopies. A single-crystal host matrix leads to narrow emission lines at room temperature that permit separation of the Stark sublevels resulting from the crystal-field splitting. We observe a fully magnetic transition and low variability of the transition dipole …
Plasmon-driven nondiffracting surface beaming
2011
We introduce diffraction-free plasmonic waves in metal-dielectric surfaces which are the analogue to nondiffracting Bessel beams in free space. By interfering multiple converging plane waves with controlled phase matching, we generate a subwavelength transverse spot located at the boundaries of a 1D plasmonic lattice. The diffraction-free beam is resonantly transmitted through the stratiform medium leading not only to light confinement but also to wave enhancement assisted by surface plasmons polaritons. To conclude, we briefly analyze other types of localized surface modes which were proposed recently.
Numerical study on the limit of quasi-static approximation for plasmonic nanosphere
2019
Plasmonic nanospheres are often employed as resonant substrates in many nanophotonic applications, like in enhanced spectroscopy, near-field microscopy, photovoltaics, and sensing. Accurate calculation and tuning of optical responses of such nanospheres are essential to achieve optimal performance. Mie theory is widely used to calculate optical properties of spherical particles. Although, an approximated version of Mie approach, the quasi-static approximation (QSA) can also be used to determine the very same properties of those spheres with a lot simpler formulations. In this work, we report our numerical study on the limit and accuracy of QSA with respect to the rigorous Mie approach. We c…
Surface Plasmons for Chiral Sensing
2021
Chiral sensitive techniques have been used to probe the fundamental symmetries of the universe, study biomolecular structures, and even develop safe drugs. The traditional method for the measurement of chirality is through optical activity, however, chiroptical signals are inherently weak and often suppressed by large backgrounds. Different techniques have been proposed to overcome the limitations of traditionally used optical polarimetry, such as cavity- and/or nanophotonic-based schemes. In this chapter we demonstrate how surface plasmon resonance can be employed as a new research tool for chiral sensing, which we term here as CHIral Surface Plasmon Resonance (CHISPR). We present how surf…