Search results for "Natural rubber"
showing 10 items of 74 documents
Reactive blending of functionalized acrylic rubbers and epoxy resins
2001
A high molecular weight acrylonitrile/butadiene/methacrylic acid (Nipol 1472) rubber is chosen to control processability and mechanical properties of a TGDDM (tetra glycidyl diphenyl methane) based epoxy resin formulation for aerospace composite applications. The physical blend of rubber and epoxy resin, achieved by dissolution of all the components in a common solvent, forms a heterogeneous system after solvent removal and presents coarse phase separation during cure that impairs any practical relevance of this material. A marked improvement of rubber-epoxy miscibility is achieved by reactive blending ('pre-reaction') the epoxy oligomer with the functional groups present in the rubber. The…
Gas Barrier, Rheological and Mechanical Properties of Immiscible Natural Rubber/Acrylonitrile Butadiene Rubber/Organoclay (NR/NBR/Organoclay) Blend N…
2020
In this paper, gas permeability studies were performed on materials based on natural rubber/acrylonitrile butadiene rubber blends and nanoclay incorporated blend systems. The properties of natural rubber (NR)/nitrile rubber (NBR)/nanoclay nanocomposites, with a particular focus on gas permeability, are presented. The measurements of the barrier properties were assessed using two different gases—O2 and CO2—by taking in account the blend composition, the filler loading and the nature of the gas molecules. The obtained data showed that the permeability of gas transport was strongly affected by: (i) the blend composition—it was observed that the increase in acrylonitrile butadiene rubber compon…
A new hyperelastic model for anisotropic hyperelastic materials with one fiber family
2016
International audience; The main goal of this study is to propose a practical application of a new family of transverse anisotropic invariants by designing a strain energy function (SEF) for incompressible fiber-reinforced materials. In order to validate the usability and creativeness of the proposed model, two different fiber-reinforced rubber materials under uniaxial and shear testing are considered. For each kind of material, numerical simulations based on the proposed model are consistent with experimental results and provide information about the effect of the new family of invariants in the construction of the SEF.
The effect of prolonged storage time on asphalt rubber binder properties
2019
Abstract This study wants to provide fundamental understanding of prolonged storage time on asphalt rubber binder properties by performing an investigation on the variation of conventional properties, rheology and morphology of four asphalt rubbers maintained at 180 °C in low shear for different digestion/storage times up to 48 h. The analysed asphalt rubbers were manufactured by combining two different asphalt binder grades, pen 35/50 and pen 50/70, with both cryogenic and ambient crumb rubber. Results have shown that keeping asphalt rubber agitated at the above mentioned processing conditions, up to 48 h, is significantly detrimental when an ambient crumb rubber is used, while it seems no…
Fatigue and Healing Properties of Low Environmental Impact Rubberized Bitumen for Asphalt Pavement
2017
The addition of recycled tyre rubber as a modifier to enhance the mechanical properties of bitumen has proven to provide asphalt mixtures with better mechanical performance. However the rubberised bitumen presents the limitation of requiring higher manufacturing and compaction temperatures. This could be solved by subjecting the tyre rubber to sort of pre-treatments such as: Adding warm-mix additives and/or using partial devulcanisation. These solutions have the potential of lowering the overall environmental impact of the asphalt pavement, however it is still not clear whether these can be detrimental for the rubberized asphalt binder mechanical properties. This paper investigates the effe…
Viscoelastic Behavior of an Epoxy Resin Modified with Recycled Waste Particles Analyzed through a Fractional Model
2021
It is well-known that the addition of randomly dispersed particles in polymers influences their linear viscoelastic behavior and dynamic mechanical properties. The aim of this study was to describe the viscoelastic behavior of an epoxy resin modified by waste glass and rubber particles using the linear fractional spring-pot model. Unlike complex classical exponential models, fractional models, being only two-parameter dependent, make it easier to characterize the viscoelastic behavior of materials. Isothermal relaxation and single frequency sweep temperature dynamic tests were carried out in a dynamic mechanical analyzer DMA150 by varying the content of the particles from 0 to 20% by weight…
Physical Cross Links in Amorphous PET, Influence of Cooling Rate and Ageing
2003
A Continuous Cooling Transformation (CCT) procedure can be used to distinguish the initial “state” of the amorphous PET samples produced upon solidification from the melt at different cooling rates. The material frozen at this stage behaves as a rubber when brought above the Tg due to the onset of physical cross links. The rubber is not a stable network, however, since physical cross links may eventually dissolve. Their size distribution, and possibly their number, depend on cooling rate and ageing. Some may be even stable above the glass transition and act as nuclei for further crystallization from the glass. Upon increasing cooling rate, size distribution becomes smaller and stability of …
Time dependent viscoelastic rheological response of pure, modified and synthetic bituminous binders
2016
Bitumen is a viscoelastic material that exhibits both elastic and viscous components of response and displays both a temperature and time dependent relationship between applied stresses and resultant strains. In addition, as bitumen is responsible for the viscoelastic behaviour of all bituminous materials, it plays a dominant role in defining many of the aspects of asphalt road performance, such as strength and stiffness, permanent deformation and cracking. Although conventional bituminous materials perform satisfactorily in most highway pavement applications, there are situations that require the modification of the binder to enhance the properties of existing asphalt material. The best kn…
The effect of a liquid CTBN rubber modifier on the thermo-kinetic parameters of an epoxy resin during a pultrusion process
2003
Abstract Rheo-kinetic behaviour of an epoxy resin, coupled with an anhydride hardener, with different CTBN liquid rubber concentration (0–15 phr), used in fibre reinforced plastics, was analysed comparing experimental data with theoretical models. The modelling of technological pultrusion process for thermoset matrix composites, developed through a numerical code realised with MATLAB, is reported, too. The model includes conduction and cure heat, degree of cure and viscosity evolution during the curing within the die. Considerable differences in process condition, using different rubber amount, are obtained. The numerical modelling of process conditions shows that the CTBN rubber presence i…
Effect of curing time on the performances of hybrid/mixed joints
2013
Abstract The aim of this work is the study of a mixed method used for the joining of aluminum alloys with glass reinforced polymer’s substrates (in the next GFRP). In particular, the technique of self-piercing riveting (in the next SPR) was applied on a co-cured joint in order to evaluate the influence of the time of inserting the rivet on the mechanical behavior of the mixed joints. Three different joints were realized: adhesive by co-curing technique, mechanical by self piercing riveting (in the next SPR) and a mixed one in which the joining techniques (i.e. adhesive and mechanical) were combined. In particular, to determine the optimum time to insert the rivet, three different times from…