Search results for "Nearest neighbour"
showing 9 items of 19 documents
STN area detection using K-NN classifiers for MER recordings in Parkinson patients during neurostimulator implant surgery
2016
Deep Brain Stimulation (DBS) applies electric pulses into the subthalamic nucleus (STN) improving tremor and other symptoms associated to Parkinson's disease. Accurate STN detection for proper location and implant of the stimulating electrodes is a complex task and surgeons are not always certain about final location. Signals from the STN acquired during DBS surgery are obtained with microelectrodes, having specific characteristics differing from other brain areas. Using supervised learning, a trained model based on previous microelectrode recordings (MER) can be obtained, being able to successfully classify the STN area for new MER signals. The K Nearest Neighbours (K-NN) algorithm has bee…
Automatic detection and agronomic characterization of olive groves using high-resolution imagery and LIDAR data
2014
The Common Agricultural Policy of the European Union grants subsidies for olive production. Areas of intensified olive farming will be of major importance for the increasing demand for oil production of the next decades, and countries with a high ratio of intensively and super-intensively managed olive groves will be more competitive than others, since they are able to reduce production costs. It can be estimated that about 25-40% of the Sicilian oliviculture must be defined as “marginal”. Modern olive cultivation systems, which permit the mechanization of pruning and harvest operations, are limited. Agronomists, landscape planners, policy decision-makers and other professionals have a grow…
Robust estimation of mean electricity consumption curves by sampling for small areas in presence of missing values
2017
In this thesis, we address the problem of robust estimation of mean or total electricity consumption curves by sampling in a finite population for the entire population and for small areas. We are also interested in estimating mean curves by sampling in presence of partially missing trajectories.Indeed, many studies carried out in the French electricity company EDF, for marketing or power grid management purposes, are based on the analysis of mean or total electricity consumption curves at a fine time scale, for different groups of clients sharing some common characteristics.Because of privacy issues and financial costs, it is not possible to measure the electricity consumption curve of eac…
Finite Point Processes
2008
Massive Lesions Classification using Features based on Morphological Lesion Differences
2007
Purpose of this work is the development of an automatic classification system which could be useful for radiologists in the investigation of breast cancer. The software has been designed in the framework of the MAGIC-5 collaboration. In the automatic classification system the suspicious regions with high probability to include a lesion are extracted from the image as regions of interest (ROIs). Each ROI is characterized by some features based on morphological lesion differences. Some classifiers as a Feed Forward Neural Network, a K-Nearest Neighbours and a Support Vector Machine are used to distinguish the pathological records from the healthy ones. The results obtained in terms of sensiti…
Optimization of the KNN Supervised Classification Algorithm as a Support Tool for the Implantation of Deep Brain Stimulators in Patients with Parkins…
2019
Deep Brain Stimulation (DBS) of the Subthalamic Nuclei (STN) is the most used surgical treatment to improve motor skills in patients with Parkinson&rsquo
A crop field modeling to simulate agronomic images
2010
In precision agriculture, crop/weed discrimination is often based on image analysis but though several algorithms using spatial information have been proposed, not any has been tested on relevant databases. A simple model that simulates virtual fields is developed to evaluate these algorithms. Virtual fields are made of crops, arranged according to agricultural practices and represented by simple patterns, and weeds that are spatially distributed using a statistical approach. Then, experimental devices using cameras are simulated with a pinhole model. Its ability to characterize the spatial reality is demonstrated through different pairs (real, virtual) of pictures. Two spatial descriptors …
Testing abnormality in the spatial arrangement of cells in the corneal endothelium using spatial point processes
2001
The study of central corneal endothelium morphology is important in Ophthalmology. Some of the pathologies that could compromise endothelial cell morphology are trauma, cataract, surgery, use of contact lenses, corneal dystrophies or degenerations. The quantitative analysis of cell shape and cellular pattern is more sensitive in detecting subtle changes in endothelial morphology than cell density measurement or cell area analysis. In this paper, the morphology of the central cornea, the most important area from the point of view of vision, is studied through an associated bivariate spatial point pattern: the centroids of the cells and the triple points, that is, the points where three diffe…
Estimation of total electricity consumption curves by sampling in a finite population when some trajectories are partially unobserved
2019
International audience; Millions of smart meters that are able to collect individual load curves, that is, electricity consumption time series, of residential and business customers at fine scale time grids are now deployed by electricity companies all around the world. It may be complex and costly to transmit and exploit such a large quantity of information, therefore it can be relevant to use survey sampling techniques to estimate mean load curves of specific groups of customers. Data collection, like every mass process, may undergo technical problems at every point of the metering and collection chain resulting in missing values. We consider imputation approaches (linear interpolation, k…