Search results for "Nebulae"

showing 6 items of 6 documents

Dynamics of ionized and neutral gas in M8

2017

We present a spectroscopic study of the dynamics of the ionized and neutral gas throughout the Lagoon nebula (M8), using VLT/FLAMES data from the Gaia-ESO Survey. We explore the connections between the nebular gas and the stellar population of the associated star cluster NGC6530. We characterize through spectral fitting emission lines of H{alpha}, [NII] and [SII] doublets, [OIII], and absorption lines of sodium D doublet, using data from the FLAMES/Giraffe and UVES spectrographs, on more than 1000 sightlines towards the entire face of the Lagoon nebula. Gas temperatures are derived from line-width comparisons, densities from the [SII] doublet ratio, and ionization parameter from H{alpha}/[N…

NebulaeAstrophysics and AstronomyInterstellar mediumPhysicsH II regionsAstrophysics::Instrumentation and Methods for AstrophysicsAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsNatural SciencesComputer Science::Digital LibrariesAstrophysics::Galaxy Astrophysics
researchProduct

Tumšajos starpzvaigžņu gāzu-putekļu miglājos esošo putekļu ietekme uz šo miglāju ķīmisko sastāvu

2013

Elektroniskā versija nesatur pielikumus

NebulaeStarpzvaigžņu videAstrofizika un fundamentālā astronomijaAstronomyFizika materiālzinātne matemātika un statistikaMiglājiInterstellar matterFizikaFizika astronomija un mehānika
researchProduct

Scaling laws in the distribution of galaxies

2004

Research done during the previous century established our Standard Cosmological Model. There are many details still to be filled in, but few would seriously doubt the basic premise. Past surveys have revealed that the large-scale distribution of galaxies in the Universe is far from random: it is highly structured over a vast range of scales. To describe cosmic structures, we need to build mathematically quantifiable descriptions of structure. Identifying where scaling laws apply and the nature of those scaling laws is an important part of understanding which physical mechanisms have been responsible for the organization of clusters, superclusters of galaxies and the voids between them. Find…

PhysicsStructure (mathematical logic)EXTRA-GALACTIC NEBULAEMICROWAVE BACKGROUND-RADIATIONCOSMIC cancer databaseCold dark matterAstrophysics (astro-ph)Cosmic microwave backgroundCAMPANAS REDSHIFT SURVEY2-POINT CORRELATION-FUNCTIONFOS: Physical sciencesGeneral Physics and AstronomyAstrophysicsN-BODY SIMULATIONSAstrophysicsPOINT CORRELATION-FUNCTIONSGalaxyCOLD DARK-MATTERFractalPROBE WMAP OBSERVATIONSDIGITAL SKY SURVEYPEAK-PATCH PICTUREStatistical physicsScalingGalaxy clusterReviews of Modern Physics
researchProduct

Observatory science with eXTP

2019

Disponible preprint en: arXiv:1812.04023v1 [astro-ph.HE] [v1] Mon, 10 Dec 2018 19:00:52 UTC (4,376 KB)

cataclysmic binariesAstronomyFIELD CAMERAS OBSERVATIONSspace research instruments nuclear astrophysics flare stars accretion and accretion disks mass loss and stellar winds cataclysmic binaries X-ray binaries supernova remnants active galactic nuclei X-ray bursts gamma-ray bursts gravitational wavesGeneral Physics and Astronomygamma-ray burstspace research instrument01 natural sciencesGamma ray burstsObservatoryAccretion and accretion disksAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsgravitational waveaccretion and accretion diskPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)supernova remnants[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph][SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]flare starsgamma-ray burstsAstrophysics::Instrumentation and Methods for Astrophysicsaccretion and accretion disks; active galactic nuclei; cataclysmic binaries; flare stars; gamma-ray bursts; gravitational waves; mass loss and stellar winds; nuclear astrophysics; space research instruments; supernova remnants; X-ray binaries; X-ray bursts; Physics and Astronomy (all)Space research instrumentsX ray burstSupernovaX-ray binariesgravitational wavesaccretion and accretion disksQUIETHigh massX-ray binarieMass loss and stellar windsNuclear astrophysicsGamma-ray burstsspace research instrumentsAstrophysics - High Energy Astrophysical PhenomenaPULSAR-WIND NEBULAEFAST RADIO-BURSTSAstrofísica nuclearActive galactic nucleusTIDAL DISRUPTIONSupernova remnantsAstrophysics::High Energy Astrophysical Phenomenanuclear astrophysicsPolarimetryFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsACCRETING NEUTRON-STARSaccretion and accretion disks; active galactic nuclei; cataclysmic binaries; flare stars; gamma-ray bursts; gravitational waves; mass loss and stellar winds; nuclear astrophysics; space research instruments; supernova remnants; X-ray binaries; X-ray burstsGravitational wavesPhysics and Astronomy (all)cataclysmic binarieSettore FIS/05 - Astronomia e AstrofisicaSUPERMASSIVE BLACK-HOLES0103 physical sciences010306 general physicsX-ray burstAstrophysics::Galaxy AstrophysicsCataclysmic binariesActive galactic nucleiflare starAstronomyWhite dwarfFlare starsStarssupernova remnantQB460-466 Astrophysics[SDU]Sciences of the Universe [physics]mass loss and stellar wind:Física::Astronomia i astrofísica [Àrees temàtiques de la UPC]active galactic nucleiX-RAYX-ray burstsSupernova remmantsmass loss and stellar windsX ray binaries[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]SEYFERT 1 GALAXYnuclear astrophysic
researchProduct

Variability in proto-PNe. II.

2014

We have carried out a detailed observational study of the light, color, and velocity variations of two bright, carbon-rich proto-planetary nebulae, IRAS 22223+4327 and 22272+5435. The light curves are based upon our observations from 1994 to 2011, together with published data by Arkhipova and collaborators. They each display four significant periods, with primary periods for IRAS 22223+4327 and 22272+5435 being 90 and 132 days, respectively. For each of them, the ratio of secondary to primary period is 0.95, a value much different from that found in Cepheids, but which may be characteristic of post-asymptotic giant branch (AGB) stars. Fewer significant periods are found in the smaller radia…

interstellar mediumAstrophysics and AstronomyRadial velocityCarbon starsPhysicsPlanetary nebulaeexoplanet astronomystellar astronomyOptical astronomyobservational astronomyPhotometryGiant starsAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsNatural SciencesAstrophysics::Galaxy AstrophysicsInfrared photometry
researchProduct

STUDIES OF VARIABILITY IN PROTO-PLANETARY NEBULAE. II. LIGHT AND VELOCITY CURVE ANALYSES OF IRAS 22272+5435 AND 22223+4327

2013

We have carried out a detailed observational study of the light, color, and velocity variations of two bright, carbon-rich proto-planetary nebulae, IRAS 22223+4327 and 22272+5435. The light curves are based upon our observations from 1994 to 2011, together with published data by Arkhipova and collaborators. They each display four significant periods, with primary periods for IRAS 22223+4327 and 22272+5435 being 90 and 132 days, respectively. For each of them, the ratio of secondary to primary period is 0.95, a value much different from that found in Cepheids, but which may be characteristic of post-asymptotic giant branch (AGB) stars. Fewer significant periods are found in the smaller radia…

oscillations [stars]Cepheid variableFOS: Physical sciencesAstrophysics01 natural sciences0103 physical sciencesAstrophysics::Solar and Stellar Astrophysicsgeneral [planetary nebulae]010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsGalaxy rotation curvePhysicsNebula010308 nuclear & particles physicsAstronomy and AstrophysicsLight curveAGB and post-AGB [stars]Planetary nebulaRadial velocityStarsAmplitudeAstrophysics - Solar and Stellar Astrophysicsvariables: general [stars]Space and Planetary Scienceindividual (IRAS 22223+4327 IRAS 22272+5435) [stars]Astrophysics::Earth and Planetary AstrophysicsThe Astrophysical Journal
researchProduct