Search results for "Neural"

showing 10 items of 2783 documents

Amyotrophic lateral sclerosis modifies progenitor neural proliferation in adult classic neurogenic brain niches.

2017

Background Adult neurogenesis persists through life at least in classic neurogenic niches. Neurogenesis has been previously described as reduced in neurodegenerative diseases. There is not much knowledge about is adult neurogenesis is or not modified in amyotrophy lateral sclerosis (ALS). All previous publications has studied the ALS SOD1 (superoxide dismutase) transgenic mouse model. The purpose of this study is to examine the process of adult neurogenesis in classic niches (subventricular zone [SVZ] and subgranular zone [SGZ] of the dentate gyrus) in patients with amyotrophic lateral sclerosis (ALS), both with (ALS-FTD) and without associated frontotemporal dementia (FTD). Methods We stud…

0301 basic medicineMalePathologymedicine.medical_specialtyDoublecortin ProteinTDP-43NeurogenesisSOD1Subventricular zoneAdult neurogenesislcsh:RC346-429Subgranular zone03 medical and health sciences0302 clinical medicineNeuroblastNeural Stem CellsLateral VentriclesMedicineHumansAmyotrophic lateral sclerosislcsh:Neurology. Diseases of the nervous systemAgedAged 80 and overbusiness.industryDentate gyrusNeurogenesisAmyotrophic Lateral SclerosisNeurodegenerative diseasesBrainGeneral MedicineMiddle Agedmedicine.diseaseNeural stem cellnervous system diseases030104 developmental biologymedicine.anatomical_structurenervous systemFrontotemporal DementiaFemaleNeurology (clinical)business030217 neurology & neurosurgeryResearch ArticleBMC neurology
researchProduct

Characterization of the canine rostral ventricular-subventricular zone: Morphological, immunohistochemical, ultrastructural, and neurosphere assay st…

2017

The mammalian ventricular-subventricular zone (V-SVZ) presents the highest neurogenic potential in the brain of the adult individual. In rodents, it is mainly composed of chains of neuroblasts. In humans, it is organized in layers where neuroblasts do not form chains. The aim of this study is to describe the cytoarchitecture of canine V-SVZ (cV-SVZ), to assess its neurogenic potential, and to compare our results with those previously described in other species. We have studied by histology, immunohistochemistry (IHC), electron microscopy and neurosphere assay the morphology, cytoarchitecture and neurogenic potential of cV-SVZ. Age groups of animals were performed. Histological and ultrastru…

0301 basic medicineMalePathologymedicine.medical_specialtyanimal diseasesSubventricular zoneBiology03 medical and health sciences0302 clinical medicineDogsNeuroblastNeural Stem CellsSpecies SpecificityNeurospheremedicineSubependymal zoneAnimalsStem Cell NicheCells CulturedGeneral NeuroscienceNeurogenesisBrainHistologyImmunohistochemistryMicroscopy Electron030104 developmental biologymedicine.anatomical_structurenervous systemCytoarchitectureImmunohistochemistryFemale030217 neurology & neurosurgeryThe Journal of comparative neurology
researchProduct

Synaptic Regulator α-Synuclein in Dopaminergic Fibers Is Essentially Required for the Maintenance of Subependymal Neural Stem Cells.

2018

Synaptic protein -synuclein (-SYN) modulates neurotransmission in a complex and poorly understood manner and aggregates in the cytoplasm of degenerating neurons in Parkinsons disease. Here, we report that -SYN present in dopaminergic nigral afferents is essential for the normal cycling and maintenance of neural stem cells (NSCs) in the brain subependymal zone of adult male and female mice. We also showthat premature senescence of adult NSCs into non-neurogenic astrocytes in mice lacking-SYN resemblesthe effects of dopaminergic fiber degeneration resulting from chronic exposure to 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine or intranigral inoculation of aggregated toxic -SYN. Interestingly…

0301 basic medicineMaleanimal diseases[SDV]Life Sciences [q-bio]DopamineNeurogenesisRegulatorniche biologyBiologyNeurotransmissionenvironment and public health03 medical and health scienceschemistry.chemical_compoundstemnessMice0302 clinical medicineNeural Stem CellsDopaminemedicineSubependymal zoneAnimalsHumansheterocyclic compoundsNeurons AfferentStem Cell NicheResearch ArticlesparkinsonismCellular SenescenceGeneral NeuroscienceMPTPDopaminergic NeuronsNeurogenesisDopaminergicBrainNeural stem cellMice Mutant Strains3. Good healthnervous system diseases[SDV] Life Sciences [q-bio]adult neurogenesis030104 developmental biologychemistrynervous systemalpha-SynucleinFemaleNeuroscience030217 neurology & neurosurgerySnca knock-outmedicine.drug
researchProduct

Hyperammonemia alters the mismatch negativity in the auditory evoked potential by altering functional connectivity and neurotransmission

2020

Minimal hepatic encephalopathy (MHE) is a neuropsychiatric syndrome produced by central nervous system dysfunction subsequent to liver disease. Hyperammonemia and inflammation act synergistically to alter neurotransmission, leading to the cognitive and motor alterations in MHE, which are reproduced in rat models of chronic hyperammonemia. Patients with MHE show altered functional connectivity in different neural networks and a reduced response in the cognitive potential mismatch negativity (MMN), which correlates with attention deficits. The mechanisms by which MMN is altered in MHE remain unknown. The objectives of this work are as follows: To assess if rats with chronic hyperammonemia rep…

0301 basic medicineMalehippocampusPopulationMismatch negativityNeurotransmissionStimulus (physiology)Auditory cortexBiochemistrySynaptic Transmissionbehavioral disciplines and activitiesmetabolic diseases03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineNeural PathwaysmedicineAnimalsHyperammonemiaEvoked potentialRats Wistareducationeducation.field_of_studybusiness.industryGlutamate receptorBrainHyperammonemiamedicine.diseaseencephalopathyRats030104 developmental biologyHepatic EncephalopathyEvoked Potentials AuditorybusinessNeuroscience030217 neurology & neurosurgerypsychological phenomena and processes
researchProduct

Activation of MORs in the VTA induces changes on cFos expression in different projecting regions: Effect of inflammatory pain.

2019

Abstract Chronic pain is a worldwide major health problem and many pain-suffering patients are under opioid based therapy. Epidemiological data show that pain intensity correlates with the risk of misuse of prescription opioids, and other drugs of abuse including alcohol. This increased vulnerability to suffer Substance Use Disorders could be, in part, caused by functional changes that occur over the mesocorticolimbic system, a brain pathway involved in reward processing and addiction. Previous data in rats revealed that inflammatory pain desensitizes mu opioid receptors (MORs) in the ventral tegmental area (VTA). As a consequence, pain alters dopamine release in the nucleus accumbens (NAc)…

0301 basic medicineMalemedicine.medical_specialtyMicroinjectionsFreund's AdjuvantReceptors Opioid muPainNucleus accumbens03 medical and health sciencesCellular and Molecular Neurosciencechemistry.chemical_compound0302 clinical medicineDopamineInternal medicinemental disordersNeural PathwaysMedicineAnimalsInflammationbusiness.industryVentral Tegmental AreaChronic painGenes fosCell BiologyEnkephalin Ala(2)-MePhe(4)-Gly(5)-medicine.diseaseImmunohistochemistryRatsVentral tegmental areaAnalgesics OpioidDAMGOStria terminalis030104 developmental biologymedicine.anatomical_structureEndocrinologynervous systemchemistryOpioidGene Expression Regulationbusiness030217 neurology & neurosurgerymedicine.drugBasolateral amygdalaNeurochemistry international
researchProduct

Spinal plasticity with motor imagery practice.

2019

KEY POINTS: While a consensus has now been reached on the effect of motor imagery (MI) – the mental simulation of an action – on motor cortical areas, less is known about its impact on spinal structures. The current study, using H‐reflex conditioning paradigms, examined the effect of a 20 min MI practice on several spinal mechanisms of the plantar flexor muscles. We observed modulations of spinal presynaptic circuitry while imagining, which was even more pronounced following an acute session of MI practice. We suggested that the small cortical output generated during MI may reach specific spinal circuits and that repeating MI may increase the sensitivity of the spinal cord to its effects. T…

0301 basic medicineMalemental-imageryPhysiologypathwaysStimulationIsometric exerciseD1 presynaptic inhibitionSynaptic TransmissionH-Reflex0302 clinical medicineNeuronal PlasticityMotor Cortexmodulationmedicine.anatomical_structureSpinal Cordtriceps surae[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]FemaleFemoral NerveMuscle ContractionAdultia afferentsheteronymous Ia facilitationMovementSensory systemfacilitation03 medical and health sciencesMotor imageryexcitabilityNeuroplasticitymedicineHumansNeurons AfferentMuscle Skeletalsoleusinterneuronsbusiness.industryPeroneal NerveNeural Inhibitionpresynaptic inhibitionSpinal cordElectric StimulationSpine030104 developmental biologyactivationH-reflexbusinessNeuroscience030217 neurology & neurosurgeryCommon peroneal nerveNeuroscienceThe Journal of physiology
researchProduct

Multimodal determinants of phase-locked dynamics across deep-superficial hippocampal sublayers during theta oscillations

2020

Theta oscillations play a major role in temporarily defining the hippocampal rate code by translating behavioral sequences into neuronal representations. However, mechanisms constraining phase timing and cell-type-specific phase preference are unknown. Here, we employ computational models tuned with evolutionary algorithms to evaluate phase preference of individual CA1 pyramidal cells recorded in mice and rats not engaged in any particular memory task. We applied unbiased and hypothesis-free approaches to identify effects of intrinsic and synaptic factors, as well as cell morphology, in determining phase preference. We found that perisomatic inhibition delivered by complementary populations…

0301 basic medicineMaleneural circuits.Patch-Clamp TechniquesGeneral Physics and AstronomyAction PotentialsHippocampal formationCell morphologySettore BIO/09 - Fisiologia0302 clinical medicineTheta Rhythmlcsh:ScienceBiophysical modelPhysicsNeurons0303 health sciencesComputational modelMultidisciplinaryBiología molecularPyramidal CellsQDynamics (mechanics)Theta oscillationsFemaleAlgorithmsScienceNeurocienciasModels NeurologicalPhase (waves)Mice TransgenicNeural circuitsGeneral Biochemistry Genetics and Molecular BiologyArticle03 medical and health sciencesGlutamatergicMemory taskAnimalsComputer SimulationRats WistarCA1 Region Hippocampal030304 developmental biologyGeneral ChemistryMice Inbred C57BLKinetics030104 developmental biologySynapseslcsh:QNeuroscience030217 neurology & neurosurgeryBiophysical models
researchProduct

Mapping brain activity with flexible graphene micro-transistors

2016

arXiv:1611.05693v1.-- et al.

0301 basic medicineMaterials scienceFOS: Physical sciences02 engineering and technologylaw.invention03 medical and health scienceslawGeneral Materials ScienceElectronicsPhysics - Biological PhysicsNeural implantsBioelectronicsBioelectronicsbusiness.industryGrapheneSensorsMechanical EngineeringTransistorGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsField-effect transistorsMicroelectrodeBrain implant030104 developmental biologyBiological Physics (physics.bio-ph)Mechanics of MaterialsFOS: Biological sciencesQuantitative Biology - Neurons and CognitionOptoelectronicsNeurons and Cognition (q-bio.NC)Charge carrierField-effect transistorGraphene0210 nano-technologybusiness2D Materials
researchProduct

Odorant metabolizing enzymes in the peripheral olfactory process

2016

Odorant metabolizing enzymes in the peripheral olfactory process

0301 basic medicineMetabolizing enzymesanatomyChemistry[ SDV.AEN ] Life Sciences [q-bio]/Food and Nutritionmusculoskeletal neural and ocular physiologymammalOlfactionolfactoryCell biologyPeripheral03 medical and health sciences[SDV.AEN] Life Sciences [q-bio]/Food and Nutrition030104 developmental biology0302 clinical medicinemedicine.anatomical_structurecortexmedicineepitheliumOlfactory epitheliumProcess (anatomy)[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition030217 neurology & neurosurgerypsychological phenomena and processes
researchProduct

2018

In mammalian species, including humans, the hippocampal dentate gyrus (DG) is a primary region of adult neurogenesis. Aberrant adult hippocampal neurogenesis is associated with neurological pathologies. Understanding the cellular mechanisms controlling adult hippocampal neurogenesis is expected to open new therapeutic strategies for mental disorders. Microglia is intimately associated with neural progenitor cells in the hippocampal DG and has been implicated, under varying experimental conditions, in the control of the proliferation, differentiation and survival of neural precursor cells. But the underlying mechanisms remain poorly defined. Using fluorescent in situ hybridization we show th…

0301 basic medicineMicrogliaDentate gyrusNeurogenesisHippocampusHippocampal formationBiologyNeural stem cellSubgranular zone03 medical and health sciencesCellular and Molecular Neuroscience030104 developmental biology0302 clinical medicinemedicine.anatomical_structuremedicineNeuronNeuroscience030217 neurology & neurosurgeryFrontiers in Cellular Neuroscience
researchProduct