Search results for "Neural"

showing 10 items of 2783 documents

Corrigendum: Intraventricular injections of mesenchymal stem cells activate endogenous functional remyelination in a chronic demyelinating murine mod…

2017

Current treatments for demyelinating diseases are generally only capable of ameliorating the symptoms, with little to no effect in decreasing myelin loss nor promoting functional recovery. Mesenchymal stem cells (MSCs) have been shown by many researchers to be a potential therapeutic tool in treating various neurodegenerative diseases, including demyelinating disorders. However, in the majority of the cases, the effect was only observed locally, in the area surrounding the graft. Thus, in order to achieve general remyelination in various brain structures simultaneously, bone marrow-derived MSCs were transplanted into the lateral ventricles (LVs) of the cuprizone murine model. In this manner…

0301 basic medicineCancer ResearchCellular differentiationImmunologyMesenchymal stem cellSubventricular zoneCell BiologyBiologyNeural stem cellCell biology03 medical and health sciencesCellular and Molecular NeuroscienceMyelin030104 developmental biology0302 clinical medicinemedicine.anatomical_structurenervous systemImmunologymedicineOriginal ArticleRemyelinationProgenitor cellDemyelinating Disorder030217 neurology & neurosurgeryCell deathdisease
researchProduct

Isolation, culture and analysis of adult subependymal neural stem cells

2016

Individual cells dissected from the subependymal neurogenic niche of the adult mouse brain proliferate in medium containing basic fibroblast growth factor (bFGF) and/or epidermal growth factor (EGF) as mitogens, to produce multipotent clonal aggregates called neurospheres. These cultures constitute a powerful tool for the study of neural stem cells (NSCs) provided that they allow the analysis of their features and potential capacity in a controlled environment that can be modulated and monitored more accurately than in vivo. Clonogenic and population analyses under mitogen addition or withdrawal allow the quantification of the self-renewing and multilineage potency of these cells and the id…

0301 basic medicineCancer ResearchNeurogenesisCellular differentiationBasic fibroblast growth factorPopulationCell Culture TechniquesBiologyMice03 medical and health scienceschemistry.chemical_compoundNeural Stem CellsEpendymaNeurosphereSubependymal zoneAnimalsHumanseducationMolecular BiologyNeuronseducation.field_of_studyNeurogenesisCell DifferentiationCell BiologyNeural stem cellCell biologyAdult Stem Cells030104 developmental biologychemistryImmunologyDevelopmental BiologyAdult stem cellDifferentiation
researchProduct

Singular Location and Signaling Profile of Adenosine A2A-Cannabinoid CB1 Receptor Heteromers in the Dorsal Striatum

2018

The dorsal striatum is a key node for many neurobiological processes such as motor activity, cognitive functions, and affective processes. The proper functioning of striatal neurons relies critically on metabotropic receptors. Specifically, the main adenosine and endocannabinoid receptors present in the striatum, ie, adenosine A(2A) receptor (A(2A)R) and cannabinoid CB1 receptor (CB1R), are of pivotal importance in the control of neuronal excitability. Facilitatory and inhibitory functional interactions between striatal A(2A)R and CB1R have been reported, and evidence supports that this cross-talk may rely, at least in part, on the formation of A(2A)R-CB1R heteromeric complexes. However, th…

0301 basic medicineCannabinoid receptorAdenosineReceptor Adenosine A2Amedicine.medical_treatmentAdenosinaAdenosine A2A receptormediated inhibitionStriatumBiologyhuntingtons-disease micecannabinoid CB1Mice03 medical and health sciencesglutamatergic neurotransmission0302 clinical medicineReceptor Cannabinoid CB1NeurobiologyNeural PathwaysBasal gangliamedicineAnimalsHumansendocannabinoid systemGenetically modified animalProtein Structure QuaternaryA(2A) receptorsPharmacologyEndocannabinoid systemCorpus Striatumprotein-coupled receptorsProtein SubunitsPsychiatry and Mental healthtransgenic mouse modelHuntington Disease030104 developmental biologyMetabotropic receptornervous systembasal gangliaCannabinoidallosteric interactionsNeuroscience030217 neurology & neurosurgeryNeurobiologiaSignal Transduction
researchProduct

Localization of the cannabinoid type-1 receptor in subcellular astrocyte compartments of mutant mouse hippocampus

2018

Astroglial type‐1 cannabinoid (CB1) receptors are involved in synaptic transmission, plasticity and behavior by interfering with the so‐called tripartite synapse formed by pre‐ and post‐synaptic neuronal elements and surrounding astrocyte processes. However, little is known concerning the subcellular distribution of astroglial CB1 receptors. In particular, brain CB1 receptors are mostly localized at cells' plasmalemma, but recent evidence indicates their functional presence in mitochondrial membranes. Whether CB1 receptors are present in astroglial mitochondria has remained unknown. To investigate this issue, we included conditional knock‐out mice lacking astroglial CB1 receptor expression …

0301 basic medicineCannabinoid receptormedicine.medical_treatmentImmunoelectron microscopyNeurotransmissionBiologyHippocampusImmunoenzyme Techniques03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineReceptor Cannabinoid CB1Glial Fibrillary Acidic ProteinTripartite synapsemedicineAnimalsMicroscopy ImmunoelectronReceptorMice KnockoutGlial fibrillary acidic proteinmusculoskeletal neural and ocular physiologyfood and beveragesMitochondriaCell biology030104 developmental biologymedicine.anatomical_structurenervous systemNeurologyAstrocytesbiology.proteinlipids (amino acids peptides and proteins)Cannabinoidpsychological phenomena and processes030217 neurology & neurosurgeryAstrocyte
researchProduct

Anatomical characterization of the cannabinoid CB1receptor in cell-type-specific mutant mouse rescue models

2016

Type 1 cannabinoid (CB1 ) receptors are widely distributed in the brain. Their physiological roles depend on their distribution pattern, which differs remarkably among cell types. Hence, subcellular compartments with little but functionally relevant CB1 receptors can be overlooked, fostering an incomplete mapping. To overcome this, knockin mice with cell-type-specific rescue of CB1 receptors have emerged as excellent tools for investigating CB1 receptors' cell-type-specific localization and sufficient functional role with no bias. However, to know whether these rescue mice maintain endogenous CB1 receptor expression level, detailed anatomical studies are necessary. The subcellular distribut…

0301 basic medicineCannabinoid receptormusculoskeletal neural and ocular physiologyGeneral Neurosciencemedicine.medical_treatmentImmunoelectron microscopyfood and beveragesBiologyHippocampal formationEndocannabinoid system03 medical and health sciencesGlutamatergic030104 developmental biology0302 clinical medicinenervous systemmedicineGABAergiclipids (amino acids peptides and proteins)CannabinoidReceptorNeurosciencepsychological phenomena and processes030217 neurology & neurosurgeryJournal of Comparative Neurology
researchProduct

Conversion of Nonproliferating Astrocytes into Neurogenic Neural Stem Cells: Control by FGF2 and Interferon-gamma

2016

Abstract Conversion of astrocytes to neurons, via de-differentiation to neural stem cells (NSC), may be a new approach to treat neurodegenerative diseases and brain injuries. The signaling factors affecting such a cell conversion are poorly understood, and they are hard to identify in complex disease models or conventional cell cultures. To address this question, we developed a serum-free, strictly controlled culture system of pure and homogeneous “astrocytes generated from murine embryonic stem cells (ESC).” These stem cell derived astrocytes (mAGES), as well as standard primary astrocytes resumed proliferation upon addition of FGF. The signaling of FGF receptor tyrosine kinase converted G…

0301 basic medicineCell signalingNeurogenesisBiologyInterferon-gammaMice03 medical and health sciences0302 clinical medicineNeural Stem CellsNeurosphereddc:570medicineAnimalsCell ProliferationEpidermal Growth FactorMultipotent Stem CellsCell CycleNeurogenesisMouse Embryonic Stem CellsCell BiologyAnatomyCell DedifferentiationEmbryonic stem cellNeural stem cellCell biologyNeuroepithelial cell030104 developmental biologymedicine.anatomical_structureGene Expression RegulationAstrocytesMolecular MedicineFibroblast Growth Factor 2Stem cell030217 neurology & neurosurgerySignal TransductionDevelopmental BiologyAstrocyte
researchProduct

Food Sensation Modulates Locomotion by Dopamine and Neuropeptide Signaling in a Distributed Neuronal Network

2018

Finding food and remaining at a food source are crucial survival strategies. We show how neural circuits and signaling molecules regulate these food-related behaviors in Caenorhabditis elegans. In the absence of food, AVK interneurons release FLP-1 neuropeptides that inhibit motorneurons to regulate body posture and velocity, thereby promoting dispersal. Conversely, AVK photoinhibition promoted dwelling behavior. We identified FLP-1 receptors required for these effects in distinct motoneurons. The DVA interneuron antagonizes signaling from AVK by releasing cholecystokinin-like neuropeptides that potentiate cholinergic neurons, in response to dopaminergic neurons that sense food. Dopamine al…

0301 basic medicineCell signalingSensory Receptor CellsInterneuronDopamineSensationNeuropeptideOptogeneticsBiologyReceptors DopamineAnimals Genetically Modified03 medical and health sciencesChannelrhodopsinsDopamineNeural PathwaysBiological neural networkmedicineAnimalsCaenorhabditis elegansCaenorhabditis elegans ProteinsGeneral NeuroscienceNeuropeptidesdigestive oral and skin physiologyDopaminergicOptogenetics030104 developmental biologymedicine.anatomical_structureFoodDopamine receptorCalciumNeuroscienceLocomotionmedicine.drugNeuron
researchProduct

Increasing Neural Stem Cell Division Asymmetry and Quiescence Are Predicted to Contribute to the Age-Related Decline in Neurogenesis.

2018

Summary: Adult murine neural stem cells (NSCs) generate neurons in drastically declining numbers with age. How cellular dynamics sustain neurogenesis and how alterations with age may result in this decline are unresolved issues. We therefore clonally traced NSC lineages using confetti reporters in young and middle-aged adult mice. To understand the underlying mechanisms, we derived mathematical models that explain observed clonal cell type abundances. The best models consistently show self-renewal of transit-amplifying progenitors and rapid neuroblast cell cycle exit. In middle-aged mice, we identified an increased probability of asymmetric stem cell divisions at the expense of symmetric di…

0301 basic medicineCell typeAgingNeurogenesisBiologyAdult Neurogenesis ; Computational Model ; Lineage Tracing ; Lineage Tree Simulation ; Model Averaging ; Moment EquationsModels BiologicalGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesMiceNeuroblastNeural Stem CellsAnimalsCell LineageComputer SimulationProgenitor celllcsh:QH301-705.5Stochastic ProcessesNeurogenesisAsymmetric Cell DivisionCell CycleReproducibility of ResultsCell cycleNeural stem cellClone Cells030104 developmental biologylcsh:Biology (General)Stem cellNeuroscienceHomeostasisCell reports
researchProduct

The Drosophila Hox gene Ultrabithorax acts both in muscles and motoneurons to orchestrate formation of specific neuromuscular connections

2016

Hox genes are known to specify motoneuron pools in the developing vertebrate spinal cord and to control motoneuronal targeting in several species. However, the mechanisms controlling axial diversification of muscle innervation patterns are still largely unknown. We present data showing that the Drosophila Hox gene Ultrabithorax (Ubx) acts in the late embryo to establish target specificity of ventrally projecting RP motoneurons. In abdominal segments A2 to A7, RP motoneurons innervate the ventrolateral muscles VL1-4, with VL1 and VL2 being innervated in a Wnt4-dependent manner. In Ubx mutants, these motoneurons fail to make correct contacts with muscle VL1, a phenotype partially resembling t…

0301 basic medicineCell typeEmbryo Nonmammaliananimal structuresNeuromuscular JunctionGenes InsectMuscle DevelopmentNeuromuscular junctionAnimals Genetically ModifiedHox genes03 medical and health sciencesWNT4MorphogenesismedicineAnimalsDrosophila ProteinsHox geneWnt Signaling PathwayMolecular BiologyTranscription factorUltrabithoraxHomeodomain ProteinsMotor NeuronsGeneticsbiologyMusclesmusculoskeletal neural and ocular physiologyfungiGenes HomeoboxGene Expression Regulation Developmentalbiology.organism_classificationMuscle innervationSegmental patterningCell biologyMotoneuronsDrosophila melanogaster030104 developmental biologymedicine.anatomical_structurenervous system209embryonic structuresDrosophilaWnt signalling pathwayDrosophila melanogasterDrosophila ProteinTranscription FactorsResearch ArticleDevelopmental BiologyDevelopment
researchProduct

Taking Advantage of Nature’s Gift: Can Endogenous Neural Stem Cells Improve Myelin Regeneration?

2016

Irreversible functional deficits in multiple sclerosis (MS) are directly correlated to axonal damage and loss. Neurodegeneration results from immune-mediated destruction of myelin sheaths and subsequent axonal demyelination. Importantly, oligodendrocytes, the myelinating glial cells of the central nervous system, can be replaced to some extent to generate new myelin sheaths. This endogenous regeneration capacity has so far mainly been attributed to the activation and recruitment of resident oligodendroglial precursor cells. As this self-repair process is limited and increasingly fails while MS progresses, much interest has evolved regarding the development of remyelination-promoting strateg…

0301 basic medicineCell typeMultiple Sclerosisgliaadult neural stem cellsoligodendrocytesReviewBiologyRegenerative MedicineCatalysisInorganic ChemistryWhite matterlcsh:Chemistry03 medical and health sciencesMyelin0302 clinical medicineNeural Stem CellsmedicineAnimalsHumansPhysical and Theoretical ChemistryRemyelinationMolecular Biologylcsh:QH301-705.5SpectroscopyMyelin SheathMultiple sclerosisRegeneration (biology)Organic ChemistryEndogenous regenerationGeneral Medicinedifferentiationmedicine.diseaseNeural stem cellComputer Science ApplicationsNerve Regeneration030104 developmental biologymedicine.anatomical_structureremyelinationlcsh:Biology (General)lcsh:QD1-999nervous systemprecursor cellsImmunologyNeurosciencecell fate determinationwhite matter030217 neurology & neurosurgeryInternational Journal of Molecular Sciences
researchProduct