Search results for "NeuroD"

showing 4 items of 604 documents

Protein levels of brain-derived neurotrophic factor in the hippocampus of low/high aerobic capacity rats

2010

Hippocrates and Plato have first documented the connection between a healthy mind and body, during a period which launched analytical thinking and philosophy in Ancient Greece. Modern research has also indicated the contribution of an active lifestyle to enhanced brain performance and decreased incidence of neurodegenerative diseases and mood disorders such as Alzheimer’s disease and depression respectively. This has been hypothesized to emerge through mechanisms which are enhanced by exercise and contribute on brain plas-ticity and health. The Neurotrophins hypothesis implicates several molecules in brain plasticity and healthy aging. Among them, Brain-derived Neurotrophic Factor (BDNF) ha…

synaptic plasticityneurodegenerative disordersBrain-derived Neurotrophic Factorhippokampusliikuntamuscle activationaivot
researchProduct

The prolyl-isomerase PIN1 is essential for nuclear Lamin-B structure and function and protects heterochromatin under mechanical stress.

2021

Summary: Chromatin organization plays a crucial role in tissue homeostasis. Heterochromatin relaxation and consequent unscheduled mobilization of transposable elements (TEs) are emerging as key contributors of aging and aging-related pathologies, including Alzheimer’s disease (AD) and cancer. However, the mechanisms governing heterochromatin maintenance or its relaxation in pathological conditions remain poorly understood. Here we show that PIN1, the only phosphorylation-specific cis/trans prolyl isomerase, whose loss is associated with premature aging and AD, is essential to preserve heterochromatin. We demonstrate that this PIN1 function is conserved from Drosophila to humans and prevents…

transposonsNeocortexMiceHeterochromatinProlyl isomeraseDrosophila ProteinsBiology (General)PhosphorylationRNA Small InterferingTissue homeostasisCells CulturedSettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniNeuronsLamin Type BChemistryHP1phosphorylationneurodegenerationnuclear envelopePeptidylprolyl IsomeraseCell biologyDrosophila heterochromatin HP1 Lamin mechanical stress neurodegeneration nuclear envelope phosphorylation PIN1 transposonsNuclear laminaDrosophilaRNA InterferencePremature agingQH301-705.5HeterochromatinNuclear EnvelopeDrosophila; heterochromatin; HP1; Lamin; mechanical stress; neurodegeneration; nuclear envelope; phosphorylation; PIN1; transposonsSettore BIO/11 - Biologia MolecolareSettore MED/08 - Anatomia PatologicaGeneral Biochemistry Genetics and Molecular BiologyPIN1Alzheimer DiseaseSettore MED/05 - Patologia ClinicaAnimalsHumansHeterochromatin maintenancemechanical stressheterochromatinmechanical streMice Inbred C57BLNIMA-Interacting Peptidylprolyl IsomeraseChromobox Protein Homolog 5DNA Transposable ElementsHeterochromatin protein 1Stress MechanicalLaminLaminCell reports
researchProduct

Effect of RNS60 in amyotrophic lateral sclerosis: a phase II multicentre, randomized, double-blind, placebo-controlled trial

2022

Background and purpose: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with limited treatment options. RNS60 is an immunomodulatory and neuroprotective investigational product that has shown efficacy in animal models of ALS and other neurodegenerative diseases. Its administration has been safe and well tolerated in ALS subjects in previous early phase trials. Methods: This was a phase II, multicentre, randomized, double-blind, placebo-controlled, parallel-group trial. Participants diagnosed with definite, probable or probable laboratory-supported ALS were assigned to receive RNS60 or placebo administered for 24 weeks intravenously (375 ml) once a week and via nebul…

treatmentAmyotrophic Lateral Sclerosisplacebo-controlledNeurodegenerative DiseasesALS; clinical trial; placebo-controlled; randomized; treatmentclinical trialTreatment OutcomeNeurologyDouble-Blind MethodrandomizedQuality of LifeHumansSettore MED/26 - NeurologiaNeurology (clinical)ALSBiomarkers
researchProduct

WDR45 Gene and Its Role in Pediatric Epilepsies

2021

AbstractWD repeat domain 45 (WDR45) gene has been increasingly found in patients with developmental delay (DD) and epilepsy. Previously, WDR45 de novo mutations were reported in sporadic adult and pediatric patients presenting iron accumulation, while heterozygous mutations were associated with β-propeller protein-associated neurodegeneration (BPAN), a subtype of neurodegeneration with brain iron accumulation disorders, characterized by extrapyramidal movement disorders and abnormal accumulation of iron in the basal ganglia. Overall, people harboring WDR45 mutations have moderate to severe DD and different types of seizures. The phenotype of adult patients is characterized by extrapyramidal…

β-propeller proteinassociated neurodegeneration0301 basic medicinemedicine.medical_specialtyEpilepsybusiness.industryIronWDR45Intellectual disabilitymedicine.disease03 medical and health sciencesEpilepsy030104 developmental biology0302 clinical medicineWDR45Pediatrics Perinatology and Child HealthIntellectual disabilitymedicineNeurology (clinical)PsychiatrybusinessGene030217 neurology & neurosurgeryJournal of Pediatric Neurology
researchProduct