Search results for "Neurogenesis"

showing 10 items of 336 documents

Genetic regulation and function of epidermal growth factor receptor signalling in patterning of the embryonicDrosophilabrain

2016

The specification of distinct neural cell types in central nervous system development crucially depends on positional cues conferred to neural stem cells in the neuroectoderm. Here, we investigate the regulation and function of the epidermal growth factor receptor (EGFR) signalling pathway in early development of theDrosophilabrain. We find that localized EGFR signalling in the brain neuroectoderm relies on a neuromere-specific deployment of activating (Spitz, Vein) and inhibiting (Argos) ligands. Activated EGFR controls the spatially restricted expression of all dorsoventral (DV) patterning genes in a gene- and neuromere-specific manner. Further, we reveal a novel role of DV genes—ventral …

0301 basic medicineNervous system197brain neuroblastsrhomboidBasic Helix-Loop-Helix Transcription FactorsDrosophila ProteinsEpidermal growth factor receptorPhosphorylationlcsh:QH301-705.5NeuregulinsNeural PlateGeneral NeuroscienceNeurogenesisBrainGene Expression Regulation DevelopmentalNuclear ProteinsAnatomyargosNeural stem cellHedgehog signaling pathwayCell biologyErbB ReceptorsDrosophila melanogastermedicine.anatomical_structureResearch ArticleSignal Transduction1001NeurogenesisImmunologyNerve Tissue ProteinsBiology133General Biochemistry Genetics and Molecular Biology03 medical and health sciencesNeuroblastveindorsoventral patterning genesmedicineAnimalsEye ProteinsReceptors Invertebrate PeptideBody PatterningHomeodomain ProteinsEpidermal Growth FactorNeuroectodermResearchMembrane Proteins58Embryonic stem cell030104 developmental biologylcsh:Biology (General)biology.proteinepidermal growth factor receptorTranscription FactorsOpen Biology
researchProduct

The Role of SVZ Stem Cells in Glioblastoma

2019

As most common primary brain cancer, glioblastoma is also the most aggressive and malignant form of cancer in the adult central nervous system. Glioblastomas are genetic and transcriptional heterogeneous tumors, which in spite of intensive research are poorly understood. Over the years conventional therapies failed to affect a cure, resulting in low survival rates of affected patients. To improve the clinical outcome, an important approach is to identify the cells of origin. One potential source for these are neural stem cells (NSCs) located in the subventricular zone, which is one of two niches in the adult nervous system where NSCs with the capacity of self-renewal and proliferation resid…

0301 basic medicineNervous systemCancer ResearchSubventricular zoneReviewBiologylcsh:RC254-282brain tumor stem cells03 medical and health sciences0302 clinical medicineCancer stem cellmedicineProgenitor cellneural stem cellstherapyNeurogenesisglioblastomasubventricular zoneCancerlcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensmedicine.diseaseNeural stem cellnervous system diseasesneurogenesis030104 developmental biologymedicine.anatomical_structurenervous systemOncology030220 oncology & carcinogenesisCancer researchStem cellCancers
researchProduct

New Functions of APC/C Ubiquitin Ligase in the Nervous System and Its Role in Alzheimer’s Disease

2017

The E3 ubiquitin ligase Anaphase Promoting Complex/Cyclosome (APC/C) regulates important processes in cells, such as the cell cycle, by targeting a set of substrates for degradation. In the last decade, APC/C has been related to several major functions in the nervous system, including axon guidance, synaptic plasticity, neurogenesis, and neuronal survival. Interestingly, some of the identified APC/C substrates have been related to neurodegenerative diseases. There is an accumulation of some degradation targets of APC/C in Alzheimer’s disease (AD) brains, which suggests a dysregulation of the protein complex in the disorder. Moreover, recently evidence has been provided for an inactivation o…

0301 basic medicineNervous systemNeurogenesisUbiquitin-Protein LigasesReviewubiquitin ligaseNervous SystemCatalysisAnaphase-Promoting Complex-CyclosomeCdh1 ProteinsInorganic Chemistrylcsh:Chemistry03 medical and health sciencesMiceAlzheimer Diseasemedicineoxidative stressAnimalsHumansPhysical and Theoretical ChemistryMolecular Biologylcsh:QH301-705.5SpectroscopyNeuronsNeuronal PlasticitybiologyOrganic ChemistryNeurodegenerationNeurogenesisCell CycleneurodegenerationGeneral MedicineCell cyclemedicine.diseaseComputer Science ApplicationsUbiquitin ligaseCell biology030104 developmental biologymedicine.anatomical_structurelcsh:Biology (General)lcsh:QD1-999ImmunologyKnockout mouseProteolysisbiology.proteinAxon guidanceAnaphase-promoting complexexcitotoxicityInternational Journal of Molecular Sciences
researchProduct

Semaphorins in Adult Nervous System Plasticity and Disease

2021

Semaphorins, originally discovered as guidance cues for developing axons, are involved in many processes that shape the nervous system during development, from neuronal proliferation and migration to neuritogenesis and synapse formation. Interestingly, the expression of many Semaphorins persists after development. For instance, Semaphorin 3A is a component of perineuronal nets, the extracellular matrix structures enwrapping certain types of neurons in the adult CNS, which contribute to the closure of the critical period for plasticity. Semaphorin 3G and 4C play a crucial role in the control of adult hippocampal connectivity and memory processes, and Semaphorin 5A and 7A regulate adult neuro…

0301 basic medicineNervous systemsemaphorinsanimal structuresautismNeurosciences. Biological psychiatry. NeuropsychiatryReviewHippocampal formationBiologymultiple sclerosisExtracellular matrix03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineSemaphorinNeuroplasticitymedicineMultiple sclerosisPerineuronal netNeurogenesisCell Biologymedicine.diseaseschizophrenia030104 developmental biologymedicine.anatomical_structurenervous systemplasticityembryonic structuresAlzheimer’s disease; autism; epilepsy; multiple sclerosis; perineuronal net; plasticity; schizophrenia; semaphorinsepilepsysense organsperineuronal netbiological phenomena cell phenomena and immunityNeuroscienceAlzheimer’s disease030217 neurology & neurosurgeryNeuroscienceRC321-571
researchProduct

Neural stem cells in the adult olfactory bulb core generate mature neurons in vivo.

2021

17 páginas, 7 figuras.

0301 basic medicineNeurobiologia del desenvolupamentRostral migratory streamNeurogenesisSubventricular zoneStem cellsAdult neurogenesis03 medical and health sciencesMiceOlfactory bulb0302 clinical medicineCalretininNeural Stem CellsInterneuronsmedicineAnimalsDevelopmental neurobiologyNeural stem cellsNeuronsbiologyNeurogenesisCell DifferentiationCell BiologyOlfactory BulbNeural stem cellDoublecortinCell biologyOlfactory bulb030104 developmental biologymedicine.anatomical_structurenervous systemSynapsesbiology.proteinMolecular MedicineNeuronNeuNCèl·lules mare030217 neurology & neurosurgeryDevelopmental BiologyStem cells (Dayton, Ohio)REFERENCES
researchProduct

TOX3 regulates neural progenitor identity

2016

The human genomic locus for the transcription factor TOX3 has been implicated in susceptibility to restless legs syndrome and breast cancer in genome-wide association studies, but the physiological role of TOX3 remains largely unknown. We found Tox3 to be predominantly expressed in the developing mouse brain with a peak at embryonic day E14 where it co-localizes with the neural stem and progenitor markers Nestin and Sox2 in radial glia of the ventricular zone and intermediate progenitors of the subventricular zone. Tox3 is also expressed in neural progenitor cells obtained from the ganglionic eminence of E15 mice that express Nestin, and it specifically binds the Nestin promoter in chromati…

0301 basic medicineNeurogenesisBiophysicsNotch signaling pathwaySubventricular zoneMice TransgenicBiologyBiochemistryMice03 medical and health sciences0302 clinical medicineNeural Stem CellsSOX2PregnancyStructural BiologyGeneticsmedicineAnimalsRNA Small InterferingProgenitor cellMolecular BiologyCells Culturedreproductive and urinary physiologyNeuronsNeurogenesisGene Expression Regulation DevelopmentalNestinEmbryo MammalianMolecular biologyNeural stem cellMice Inbred C57BL030104 developmental biologymedicine.anatomical_structurenervous systemembryonic structuresTrans-ActivatorsFemaleStem cellApoptosis Regulatory ProteinsReceptors Progesterone030217 neurology & neurosurgeryBiochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms
researchProduct

Engineering of Adult Neurogenesis and Gliogenesis

2016

Neural stem/progenitor cells (NSPCs) retain their ability to generate newborn neurons throughout life in the mammalian brain. Here, we describe how recently developed virus- and transgenesis-based techniques will help us (1) to understand the functional effects of neurogenesis in health and disease, (2) to design novel approaches to harness the potential for NSPC-associated endogenous repair, and (3) to induce the generation of neurons outside the main neurogenic niches in the adult brain.

0301 basic medicineNeurogenesisCellular differentiationPhysiology610 Medicine & healthBiologyGeneral Biochemistry Genetics and Molecular BiologyMice03 medical and health sciencesNeural Stem Cells1300 General Biochemistry Genetics and Molecular BiologyAnimalsHumansProgenitor cellCell ProliferationGliogenesis10242 Brain Research InstituteNeurogenesisBrainCell DifferentiationMammalian brainTechniquesNeural stem cell030104 developmental biology570 Life sciences; biologyNeuroscience
researchProduct

NO Hemodynamic Speed Limit for Hippocampal Neurogenesis

2019

Newborn dentate granule cells (DGCs) are continuously generated in the adult brain. The mechanism underlying how the adult brain governs hippocampal neurogenesis remains poorly understood. In this study, we investigated how coupling of pre-existing neurons to the cerebrovascular system regulates hippocampal neurogenesis. Using a new in vivo imaging method in freely moving mice, we found that hippocampus-engaged behaviors, such as exploration in a novel environment, rapidly increased microvascular blood flow velocity in the dentate gyrus. Importantly, blocking this exploration-elevated blood flow dampened experience-induced hippocampal neurogenesis. By imaging the neurovascular niche in comb…

0301 basic medicineNeurogenesisGeneral NeuroscienceNeurogenesisHemodynamicsHemodynamicsHippocampal formationBiologyHippocampusArticleCoupling (electronics)03 medical and health sciences030104 developmental biology0302 clinical medicinemedicine.anatomical_structurenervous systemNeuroblastVascular flowDentate GyrusmedicineNeurovascular CouplingNeuronNeuroscience030217 neurology & neurosurgeryNeuron
researchProduct

Binge-like ethanol treatment in adolescence impairs autophagy and hinders synaptic maturation: Role of TLR4.

2018

Abstract Adolescence is a developmental period of brain maturation in which remodeling and changes in synaptic plasticity and neural connectivity take place in some brain regions. A different mechanism participates in adolescent brain maturation, including autophagy processes that play a role in synaptic development and plasticity. Alcohol is a neurotoxic compound whose abuse in adolescence causes TLR4 response activation by triggering neuroinflammation, neural damage and behavioral alterations. However, the potential participation of autophagy in long-term neurochemical and cognitive dysfunctions induced by binge ethanol drinking in adolescence is uncertain. We therefore evaluated whether …

0301 basic medicineNeurogenesisImmune receptorBiologyBinge Drinking03 medical and health sciencesMice0302 clinical medicineNeurochemicalAutophagyAnimalsTLR4PI3K/AKT/mTOR pathwayNeuroinflammationMice KnockoutBinge ethanol treatmentEthanolGeneral NeuroscienceAutophagyAge FactorsAdolescenceMice Inbred C57BLToll-Like Receptor 4030104 developmental biologyStructural synaptic plasticitySynaptic plasticitySynapsesExcitatory postsynaptic potentialTLR4FemaleNeuroscience030217 neurology & neurosurgeryNeuroscience letters
researchProduct

Fetal neurogenesis: breathe HIF you can.

2016

Blood vessels are part of the stem cell niche in the developing cerebral cortex, but their in vivo role in controlling the expansion and differentiation of neural stem cells (NSCs) in development has not been studied. Here, we report that relief of hypoxia in the developing cerebral cortex by ingrowth of blood vessels temporo‐spatially coincided with NSC differentiation. Selective perturbation of brain angiogenesis in vessel‐specific Gpr124 null embryos, which prevented the relief from hypoxia, increased NSC expansion at the expense of differentiation. Conversely, exposure to increased oxygen levels rescued NSC differentiation in Gpr124 null embryos and increased it further in WT embryos, s…

0301 basic medicineNeurogenesisNicheNeovascularization PhysiologicBiologyCell fate determinationGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesMiceFetusNeural Stem CellsmedicineAnimalsHumansNews & ViewsHypoxiaMolecular BiologyCentral elementreproductive and urinary physiologyCell ProliferationCerebral CortexFetusGeneral Immunology and MicrobiologyGeneral NeuroscienceNeurogenesisCell DifferentiationArticlesHypoxia-Inducible Factor 1 alpha Subunitnervous system diseasesOxygen030104 developmental biologymedicine.anatomical_structurenervous systemCerebral cortexImmunologyNeuronStem cellbiological phenomena cell phenomena and immunityNeuroscienceGlycolysisThe EMBO journal
researchProduct