Search results for "Neurogenesis"
showing 10 items of 336 documents
Genetic regulation and function of epidermal growth factor receptor signalling in patterning of the embryonicDrosophilabrain
2016
The specification of distinct neural cell types in central nervous system development crucially depends on positional cues conferred to neural stem cells in the neuroectoderm. Here, we investigate the regulation and function of the epidermal growth factor receptor (EGFR) signalling pathway in early development of theDrosophilabrain. We find that localized EGFR signalling in the brain neuroectoderm relies on a neuromere-specific deployment of activating (Spitz, Vein) and inhibiting (Argos) ligands. Activated EGFR controls the spatially restricted expression of all dorsoventral (DV) patterning genes in a gene- and neuromere-specific manner. Further, we reveal a novel role of DV genes—ventral …
The Role of SVZ Stem Cells in Glioblastoma
2019
As most common primary brain cancer, glioblastoma is also the most aggressive and malignant form of cancer in the adult central nervous system. Glioblastomas are genetic and transcriptional heterogeneous tumors, which in spite of intensive research are poorly understood. Over the years conventional therapies failed to affect a cure, resulting in low survival rates of affected patients. To improve the clinical outcome, an important approach is to identify the cells of origin. One potential source for these are neural stem cells (NSCs) located in the subventricular zone, which is one of two niches in the adult nervous system where NSCs with the capacity of self-renewal and proliferation resid…
New Functions of APC/C Ubiquitin Ligase in the Nervous System and Its Role in Alzheimer’s Disease
2017
The E3 ubiquitin ligase Anaphase Promoting Complex/Cyclosome (APC/C) regulates important processes in cells, such as the cell cycle, by targeting a set of substrates for degradation. In the last decade, APC/C has been related to several major functions in the nervous system, including axon guidance, synaptic plasticity, neurogenesis, and neuronal survival. Interestingly, some of the identified APC/C substrates have been related to neurodegenerative diseases. There is an accumulation of some degradation targets of APC/C in Alzheimer’s disease (AD) brains, which suggests a dysregulation of the protein complex in the disorder. Moreover, recently evidence has been provided for an inactivation o…
Semaphorins in Adult Nervous System Plasticity and Disease
2021
Semaphorins, originally discovered as guidance cues for developing axons, are involved in many processes that shape the nervous system during development, from neuronal proliferation and migration to neuritogenesis and synapse formation. Interestingly, the expression of many Semaphorins persists after development. For instance, Semaphorin 3A is a component of perineuronal nets, the extracellular matrix structures enwrapping certain types of neurons in the adult CNS, which contribute to the closure of the critical period for plasticity. Semaphorin 3G and 4C play a crucial role in the control of adult hippocampal connectivity and memory processes, and Semaphorin 5A and 7A regulate adult neuro…
Neural stem cells in the adult olfactory bulb core generate mature neurons in vivo.
2021
17 páginas, 7 figuras.
TOX3 regulates neural progenitor identity
2016
The human genomic locus for the transcription factor TOX3 has been implicated in susceptibility to restless legs syndrome and breast cancer in genome-wide association studies, but the physiological role of TOX3 remains largely unknown. We found Tox3 to be predominantly expressed in the developing mouse brain with a peak at embryonic day E14 where it co-localizes with the neural stem and progenitor markers Nestin and Sox2 in radial glia of the ventricular zone and intermediate progenitors of the subventricular zone. Tox3 is also expressed in neural progenitor cells obtained from the ganglionic eminence of E15 mice that express Nestin, and it specifically binds the Nestin promoter in chromati…
Engineering of Adult Neurogenesis and Gliogenesis
2016
Neural stem/progenitor cells (NSPCs) retain their ability to generate newborn neurons throughout life in the mammalian brain. Here, we describe how recently developed virus- and transgenesis-based techniques will help us (1) to understand the functional effects of neurogenesis in health and disease, (2) to design novel approaches to harness the potential for NSPC-associated endogenous repair, and (3) to induce the generation of neurons outside the main neurogenic niches in the adult brain.
NO Hemodynamic Speed Limit for Hippocampal Neurogenesis
2019
Newborn dentate granule cells (DGCs) are continuously generated in the adult brain. The mechanism underlying how the adult brain governs hippocampal neurogenesis remains poorly understood. In this study, we investigated how coupling of pre-existing neurons to the cerebrovascular system regulates hippocampal neurogenesis. Using a new in vivo imaging method in freely moving mice, we found that hippocampus-engaged behaviors, such as exploration in a novel environment, rapidly increased microvascular blood flow velocity in the dentate gyrus. Importantly, blocking this exploration-elevated blood flow dampened experience-induced hippocampal neurogenesis. By imaging the neurovascular niche in comb…
Binge-like ethanol treatment in adolescence impairs autophagy and hinders synaptic maturation: Role of TLR4.
2018
Abstract Adolescence is a developmental period of brain maturation in which remodeling and changes in synaptic plasticity and neural connectivity take place in some brain regions. A different mechanism participates in adolescent brain maturation, including autophagy processes that play a role in synaptic development and plasticity. Alcohol is a neurotoxic compound whose abuse in adolescence causes TLR4 response activation by triggering neuroinflammation, neural damage and behavioral alterations. However, the potential participation of autophagy in long-term neurochemical and cognitive dysfunctions induced by binge ethanol drinking in adolescence is uncertain. We therefore evaluated whether …
Fetal neurogenesis: breathe HIF you can.
2016
Blood vessels are part of the stem cell niche in the developing cerebral cortex, but their in vivo role in controlling the expansion and differentiation of neural stem cells (NSCs) in development has not been studied. Here, we report that relief of hypoxia in the developing cerebral cortex by ingrowth of blood vessels temporo‐spatially coincided with NSC differentiation. Selective perturbation of brain angiogenesis in vessel‐specific Gpr124 null embryos, which prevented the relief from hypoxia, increased NSC expansion at the expense of differentiation. Conversely, exposure to increased oxygen levels rescued NSC differentiation in Gpr124 null embryos and increased it further in WT embryos, s…