Search results for "Neuron"

showing 10 items of 2611 documents

Causal relationships between neurons of the nucleus incertus and the hippocampal theta activity in the rat

2017

In recent years, a body of evidence has shown that the nucleus incertus (NI), in the dorsal tegmental pons, is a key node of the brainstem circuitry involved in hippocampal theta rhythmicity. Ascending reticular brainstem system activation evokes hippocampal theta rhythm with coupled neuronal activity in the NI. In a recent paper, we showed three populations of neurons in the NI with differential firings during hippocampal theta activation. The objective of this work is to better evaluate the causal relationship between the activity of NI neurons and the hippocampus during theta activation in order to further understand the role of the NI in the theta network. A Granger causality analysis w…

0301 basic medicinePhysiologyHippocampusSensory systemHippocampal formationNucleus IncertusPons03 medical and health sciences030104 developmental biology0302 clinical medicineLimbic systemmedicine.anatomical_structurenervous systemmedicinePremovement neuronal activityBrainstemPsychologyNeuroscience030217 neurology & neurosurgeryThe Journal of Physiology
researchProduct

Spike-wave discharges in absence epilepsy: segregation of electrographic components reveals distinct pathways of seizure activity.

2020

Key points The major electrophysiological hallmarks of absence seizures are spike and wave discharges (SWDs), consisting of a sharp spike component and a slow wave component. In a widely accepted scheme, these components are functionally coupled and reflect an iterative progression of neuronal excitation during the spike and post-excitatory silence during the wave. In a genetic rat model of absence epilepsy, local pharmacological inhibition of the centromedian thalamus (CM) selectively suppressed the spike component, leaving self-contained waves in epidural recordings. Thalamic inputs induced activity in cortical microcircuits underlying the spike component, while intracortical oscillations…

0301 basic medicinePhysiologyThalamusLocal field potential03 medical and health sciencesEpilepsy0302 clinical medicineChildhood absence epilepsyThalamusSeizuresmedicineAnimalsHumansChildPhysicsCerebral CortexNeuronsQuantitative Biology::Neurons and CognitionSpike-and-waveElectroencephalographymedicine.diseasePatient DischargeRatsElectrophysiology030104 developmental biologyEpilepsy AbsenceSpike (software development)Centromedian nucleusNeuroscience030217 neurology & neurosurgeryThe Journal of physiologyReferences
researchProduct

On the structural connectivity of large-scale models of brain networks at cellular level

2021

AbstractThe brain’s structural connectivity plays a fundamental role in determining how neuron networks generate, process, and transfer information within and between brain regions. The underlying mechanisms are extremely difficult to study experimentally and, in many cases, large-scale model networks are of great help. However, the implementation of these models relies on experimental findings that are often sparse and limited. Their predicting power ultimately depends on how closely a model’s connectivity represents the real system. Here we argue that the data-driven probabilistic rules, widely used to build neuronal network models, may not be appropriate to represent the dynamics of the …

0301 basic medicineProcess (engineering)Computer scienceScienceModels NeurologicalCellular levelMachine learningcomputer.software_genreArticle03 medical and health sciencesComputational biophysics0302 clinical medicineSettore MAT/05 - Analisi MatematicamedicineBiological neural networkHumansSettore MAT/07 - Fisica MatematicaOn the structural connectivity of large-scale models of brain networks at cellular levelSettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniNeuronsMultidisciplinaryNetwork modelsSettore INF/01 - Informaticabusiness.industryQRProbabilistic logicBrain030104 developmental biologymedicine.anatomical_structureMathematical framework Neuron networks Large‑scale model Data‑driven probabilistic rules Modeling cellular-level brain networksMedicineNeuronArtificial intelligencebusinessScale modelcomputer030217 neurology & neurosurgeryScientific Reports
researchProduct

Triclosan-Evoked Neurotoxicity Involves NMDAR Subunits with the Specific Role of GluN2A in Caspase-3-Dependent Apoptosis

2018

Triclosan (TCS) is an antimicrobial agent that is used extensively in personal care and in sanitising products. A number of studies have shown the presence of TCS in different human tissues such as blood, adipose tissue, the liver, brain as well as in breast milk and urine. N-Methyl-D-aspartate receptors (NMDARs) are glutamate-gated ion channels that are widely expressed in the central nervous system and which play key roles in excitatory synaptic transmission. There is, however, no data on the involvement of NMDAR subunits in the apoptotic and neurotoxic effects of TCS. Our experiments are the first to show that TCS used at environmentally relevant concentrations evoked NMDA-dependent effe…

0301 basic medicineProgrammed cell deathGluN1Protein subunitNeurotoxinsNeuroscience (miscellaneous)Glutamic AcidCaspase 3ApoptosisReceptors N-Methyl-D-AspartateArticle03 medical and health sciencesCellular and Molecular NeuroscienceMice0302 clinical medicinemedicineAnimalsGene SilencingRNA MessengerReceptorNeuronsL-Lactate DehydrogenaseChemistryCaspase 3fungiNeurotoxicityROSTransfectionmedicine.diseaseTriclosanCell biologyGluN2BGluN2AProtein Subunits030104 developmental biologyNeurologyNMDAApoptosisNMDA receptorFemale030217 neurology & neurosurgeryMolecular Neurobiology
researchProduct

Peroxisome proliferator-activated receptor-γ coactivator-1α mediates neuroprotection against excitotoxic brain injury in transgenic mice: role of mit…

2016

Peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) is a transcriptional coactivator involved in the regulation of mitochondrial biogenesis and cell defense. The functions of PGC-1α in physiology of brain mitochondria are, however, not fully understood. To address this we have studied wild-type and transgenic mice with a two-fold overexpression of PGC-1α in brain neurons. Data showed that the relative number and basal respiration of brain mitochondria were increased in PGC-1α transgenic mice compared with wild-type mitochondria. These changes occurred concomitantly with altered levels of proteins involved in oxidative phosphorylation (OXPHOS) as studied by proteomi…

0301 basic medicineProgrammed cell deathKainic acidTransgenebcl-X ProteinPeroxisome proliferator-activated receptorBiologyInhibitor of apoptosisSettore BIO/09 - FisiologiaNeuroprotectionOxidative PhosphorylationInhibitor of Apoptosis ProteinsMice03 medical and health scienceschemistry.chemical_compoundXIAP0302 clinical medicineBrain InjurieInhibitor of Apoptosis ProteinAnimalsCA1 Region HippocampalCells CulturedNeuronschemistry.chemical_classificationNeuroscience (all)Kainic AcidCell DeathAnimalNeuron survivalGeneral NeuroscienceProteomicXIAP; Kainic acid; Mitochondria; Neuron survival; PGC-1α; Proteomics; Animals; Brain Injuries; CA1 Region Hippocampal; Cell Death; Cells Cultured; Inhibitor of Apoptosis Proteins; Kainic Acid; Mice; Mitochondria; Neurons; Oxidative Phosphorylation; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; Proto-Oncogene Proteins c-bcl-2; bcl-X Protein; Neuroscience (all)NeuronPeroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alphaMitochondriaCell biologyXIAP030104 developmental biologyProto-Oncogene Proteins c-bcl-2chemistryMitochondrial biogenesisBrain InjuriesImmunologyPGC-1α030217 neurology & neurosurgeryEuropean Journal of Neuroscience
researchProduct

Protective function of autophagy during VLCFA-induced cytotoxicity in a neurodegenerative cell model

2019

Abstract In recent years, a particular interest has focused on the accumulation of fatty acids with very long chains (VLCFA) in the occurrence of neurodegenerative diseases such as Alzheimer's disease, multiple sclerosis or dementia. Indeed, it seems increasingly clear that this accumulation of VLCFA in the central nervous system is accompanied by a progressive demyelination resulting in death of neuronal cells. Nevertheless, molecular mechanisms by which VLCFA result in toxicity remain unclear. This study highlights for the first time in 3 different cellular models (oligodendrocytes 158 N, primary mouse brain culture, and patient fibroblasts) the types of cell death involved where VLCFA-in…

0301 basic medicineProgrammed cell deathendocrine system diseases[SDV]Life Sciences [q-bio]Very long chain fatty acidCellCentral nervous systemBiologymedicine.disease_causeBiochemistry03 medical and health scienceschemistry.chemical_compoundMice0302 clinical medicinePhysiology (medical)medicineAutophagyAnimalsHumansCells CulturedNeuronsMice Inbred BALB CCell DeathMultiple sclerosisAutophagyFatty AcidsBrainNeurodegenerative DiseasesFibroblastsmedicine.disease3. Good healthCell biologyOligodendrogliaOxidative Stress030104 developmental biologymedicine.anatomical_structurechemistryLipotoxicityReactive Oxygen Species030217 neurology & neurosurgeryOxidative stress
researchProduct

Aβ Induces Excitotoxicity Mediated by APC/C-Cdh1 Depletion That Can Be Prevented by Glutaminase Inhibition Promoting Neuronal Survival

2016

AbstractThe E3 ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C) is activated by the fizzy-related protein homolog/CDC20-like protein 1 (cdh1) in post-mitotic neurons. Growing evidence suggests that dysregulation of APC/C-Cdh1 is involved in neurodegenerative diseases. Here we show in neurons that oligomers of amyloid beta (Aβ), a peptide related to Alzheimer’s disease, cause proteasome-dependent degradation of cdh1. This leads to a subsequent increase in glutaminase (a degradation target of APC/C-Cdh1), which causes an elevation of glutamate levels and further intraneuronal Ca2+ dysregulation, resulting in neuronal apoptosis. Glutaminase inhibition prevents glutamate excitotoxi…

0301 basic medicineProteasome Endopeptidase ComplexCell SurvivalAmyloid betaBlotting WesternExcitotoxicityHippocampusmedicine.disease_causeHippocampusArticleAnaphase-Promoting Complex-CyclosomeCdh1 ProteinsAnimals Genetically ModifiedMice03 medical and health sciences0302 clinical medicineGlutaminasemedicineAnimalsRats WistarNeuronsAmyloid beta-PeptidesMultidisciplinarybiologyGlutaminaseCyclin-dependent kinase 5Glutamate receptorCyclin-Dependent Kinase 5Molecular biologyRatsUbiquitin ligase030104 developmental biologyApoptosisbiology.protein030217 neurology & neurosurgeryScientific Reports
researchProduct

Cell Type-Specific Tandem Affinity Purification of the Mouse Hippocampal CB1 Receptor-Associated Proteome

2016

G protein coupled receptors (GPCRs) exert their effects through multiprotein signaling complexes. The cannabinoid receptor type 1 (CB1) is among the most abundant GPCRs in the mammalian brain and involved in a plethora of physiological functions. We used a combination of viral-mediated cell type-specific expression of a tagged CB1 fusion protein (CB1-SF), tandem affinity purification (TAP) and proteomics on hippocampal mouse tissue to analyze the composition and differences of CB1 protein complexes in glutamatergic neurons and in GABAergic interneurons. Purified proteins underwent tryptic digestion and were identified using deep-coverage data-independent acquisition with ion mobility separa…

0301 basic medicineProteomeGlutamic AcidBiologyProteomicsHippocampusBiochemistryChromatography AffinityProtein–protein interactionMice03 medical and health sciencesGlutamatergicReceptor Cannabinoid CB1AnimalsProtein Interaction Mapsgamma-Aminobutyric AcidG protein-coupled receptorNeuronsTandem affinity purificationGeneral ChemistryFusion proteinEndocannabinoid system030104 developmental biologynervous systemBiochemistryProteomeProtein BindingSignal TransductionJournal of Proteome Research
researchProduct

Human R1441C LRRK2 regulates the synaptic vesicle proteome and phosphoproteome in a Drosophila model of Parkinson's disease

2016

International audience; Mutations in leucine-rich repeat kinase 2 (LRRK2) cause late-onset, autosomal dominant familial Parkinsons disease (PD) and variation at the LRRK2 locus contributes to the risk for idiopathic PD. LRRK2 can function as a protein kinase and mutations lead to increased kinase activity. To elucidate the pathophysiological mechanism of the R1441C mutation in the GTPase domain of LRRK2, we expressed human wild-type or R1441C LRRK2 in dopaminergic neurons of Drosophila and observe reduced locomotor activity, impaired survival and an age-dependent degeneration of dopaminergic neurons thereby creating a new PD-like model. To explore the function of LRRK2 variants in vivo, we …

0301 basic medicineProteomerab3 GTP-Binding Proteinsalpha-synucleindomainSyntaxin 1Interactomedopaminergic-neuronsAnimals Genetically Modifiedchemistry.chemical_compound0302 clinical medicinemicrotubule stabilityDrosophila ProteinsProtein Interaction MapsGenetics (clinical)LRRK2 GeneKinasephosphorylationBrainParkinson DiseaseArticlesGeneral Medicineautosomal-dominant parkinsonismLRRK2Drosophila melanogasterSynaptotagmin IProteomePhosphorylationSynaptic VesiclesNerve Tissue ProteinsBiologyLeucine-Rich Repeat Serine-Threonine Protein Kinase-203 medical and health sciencesGeneticsAnimalsHumansKinase activitygeneMolecular BiologyAlpha-synucleingtp-bindingDopaminergic Neuronsrepeat kinase 2Molecular biologyPhosphoric Monoester Hydrolasesnervous system diseasesDisease Models Animal030104 developmental biologyGene Expression Regulationchemistrymutation030217 neurology & neurosurgery[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

The Small Heat Shock Protein α-Crystallin B Shows Neuroprotective Properties in a Glaucoma Animal Model

2017

Glaucoma is a neurodegenerative disease that leads to irreversible retinal ganglion cell (RGC) loss and is one of the main causes of blindness worldwide. The pathogenesis of glaucoma remains unclear, and novel approaches for neuroprotective treatments are urgently needed. Previous studies have revealed significant down-regulation of α-crystallin B as an initial reaction to elevated intraocular pressure (IOP), followed by a clear but delayed up-regulation, suggesting that this small heat-shock protein plays a pathophysiological role in the disease. This study analyzed the neuroprotective effect of α-crystallin B in an experimental animal model of glaucoma. Significant IOP elevation induced b…

0301 basic medicineProteomicsRetinal Ganglion Cellsgenetic structuresNerve fiber layerGlaucomaCell CountMass Spectrometrylcsh:ChemistryPathogenesischemistry.chemical_compound0302 clinical medicineexperimental glaucoma; α-crystallin B; neuroprotection; proteomicsProtein Interaction Mapslcsh:QH301-705.5Spectroscopyα-crystallin BGeneral MedicineComputer Science ApplicationsUp-Regulationmedicine.anatomical_structureNeuroprotective AgentsRetinal ganglion cellneuroprotectionRetinal Neuronsmedicine.medical_specialtyDown-RegulationBiologyNeuroprotectionCatalysisArticleInorganic Chemistry03 medical and health sciencesCrystallinOphthalmologyHeat shock proteinmedicineElectroretinographyAnimalsPhysical and Theoretical ChemistryMolecular BiologyIntraocular Pressureexperimental glaucomaOrganic Chemistryalpha-Crystallin B ChainRetinalGlaucomamedicine.diseaseeye diseasesDisease Models Animal030104 developmental biologylcsh:Biology (General)lcsh:QD1-999chemistry030221 ophthalmology & optometrysense organsInternational Journal of Molecular Sciences; Volume 18; Issue 11; Pages: 2418
researchProduct