Search results for "Neuron"

showing 10 items of 2611 documents

Brain Control of Plasma Cholesterol Involves Polysialic Acid Molecules in the Hypothalamus

2017

IF 3.566; International audience; The polysialic acid (PSA) is a large glycan that is added to cell-surface proteins during their post-translational maturation. In the brain, PSA modulates distances between cells and controls the plasticity of the nervous system. In the hypothalamus, PSA is involved in many aspects of energy balance including food intake, osmoregulation, circadian rhythm, and sleep. In this work, we investigated the role of hypothalamic PSA in the regulation of plasma cholesterol levels and distribution. We report that HFD consumption in mice rapidly increased plasma cholesterol, including VLDL, LDL, and HDL-cholesterol. Although plasma VLDL-cholesterol was normalized withi…

0301 basic medicineVery low-density lipoprotein[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiologyurologic and male genital diseaseschemistry.chemical_compound0302 clinical medicinemaladie cardiovasculairehypothalamusOriginal Research[SDV.MHEP.EM] Life Sciences [q-bio]/Human health and pathology/Endocrinology and metabolism2. Zero hungerGeneral Neurosciencecholestérol[ SDV.MHEP.EM ] Life Sciences [q-bio]/Human health and pathology/Endocrinology and metabolism[SDV.MHEP.EM]Life Sciences [q-bio]/Human health and pathology/Endocrinology and metabolismHypothalamus[ SDV.NEU.NB ] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/NeurobiologyAlimentation et NutritionOsmoregulationcerveaulipids (amino acids peptides and proteins)medicine.medical_specialtypolysialic acidHDLBiologylcsh:RC321-571LDL03 medical and health sciencespolysialic acid;hypothalamus;atherosclerosis;HDL;LDL;synaptic plasticityInternal medicinemedicineFood and NutritionCircadian rhythmlcsh:Neurosciences. Biological psychiatry. Neuropsychiatrysynaptic plasticityCholesterolPolysialic acidNeurosciencesathérosclérose[SDV.NEU.NB] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiologynutritional and metabolic diseasesmedicine.disease030104 developmental biologyEndocrinologychemistryNeurons and Cognitionatherosclerosis030217 neurology & neurosurgeryDyslipidemiaHomeostasisNeuroscienceFrontiers in Neuroscience
researchProduct

Rescue of Hypovitaminosis A Induces Non-Amyloidogenic Amyloid Precursor Protein (APP) Processing.

2015

Retinoic acid, the bioactive metabolite of beta-carotene or vitamin A, plays a pleiotropic, multifunctional role in vertebrate development. Studies in rodents revealed that a diet deficient in vitamin A results in a complex neonatal syndrome (the VAD syndrome), manifested in many organs. In humans, the function of retinoic acid (RA) extends into adulthood, where it has important roles in fertility, vision, and suppression of neoplastic growth. In recent years, it has also been suggested that retinoic acid might potentially act as a therapeutically relevant drug in attenuating or even preventing neurodegenerative diseases such as Alzheimer's disease (AD). Here, we report that VAD leads to an…

0301 basic medicineVitaminmedicine.medical_specialtyADAM10Retinoic acidTretinoin03 medical and health scienceschemistry.chemical_compoundADAM10 ProteinAmyloid beta-Protein PrecursorMiceNeuroblastoma0302 clinical medicineKeratolytic AgentsTretinoinInternal medicineNeuroblastomaGene expressionPresenilin-2medicineAmyloid precursor proteinAnimalsHumansGene Regulatory NetworksRats WistarCells CulturedCerebral CortexNeuronsAmyloid beta-PeptidesbiologyVitamin A Deficiencymedicine.diseaseAcitretinPeptide FragmentsVitamin A deficiencyDisease Models Animal030104 developmental biologyEndocrinologyNeurologychemistryAnimals Newbornbiology.proteinFemaleNeurology (clinical)030217 neurology & neurosurgerymedicine.drugCurrent Alzheimer research
researchProduct

New insights into the clinical and molecular spectrum of the novel CYFIP2-related neurodevelopmental disorder and impairment of the WRC-mediated acti…

2021

International audience; Purpose: A few de novo missense variants in the cytoplasmic FMRP-interacting protein 2 (CYFIP2) gene have recently been described as a novel cause of severe intellectual disability, seizures, and hypotonia in 18 individuals, with p.Arg87 substitutions in the majority.Methods: We assembled data from 19 newly identified and all 18 previously published individuals with CYFIP2 variants. By structural modeling and investigation of WAVE-regulatory complex (WRC)-mediated actin polymerization in six patient fibroblast lines we assessed the impact of CYFIP2 variants on the WRC.Results: Sixteen of 19 individuals harbor two previously described and 11 novel (likely) disease-ass…

0301 basic medicine[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/NeurobiologyWAVEregulatory complex (WRC)030105 genetics & heredityBiologyArticleIntellectual disability; Epilepsy; CYFIP2; WAVE-regulatory complex (WRC); WASF03 medical and health sciencesNeurodevelopmental disorderSeizuresWAVE-regulatory complex (WRC)medicineCYFIP2Missense mutationHumansGenetics(clinical)WASFGeneGenetics (clinical)ActinAdaptor Proteins Signal TransducingGenetics/dk/atira/pure/subjectarea/asjc/2700/2716medicine.diseaseActin cytoskeletonPhenotypeHypotoniaActins3. Good healthddc:030104 developmental biology[SDV.BDD.EO]Life Sciences [q-bio]/Development Biology/Embryology and OrganogenesisNeurodevelopmental Disordersintellectual disabilityCYFIP2epilepsymedicine.symptom
researchProduct

A Multilevel Functional Study of aSNAP25At-Risk Variant for Bipolar Disorder and Schizophrenia

2017

The synaptosomal-associated protein SNAP25 is a key player in synaptic vesicle docking and fusion and has been associated with multiple psychiatric conditions, including schizophrenia, bipolar disorder, and attention-deficit/hyperactivity disorder. We recently identified a promoter variant inSNAP25,rs6039769, that is associated with early-onset bipolar disorder and a higher gene expression level in human prefrontal cortex. In the current study, we showed that this variant was associated both in males and females with schizophrenia in two independent cohorts. We then combinedin vitroandin vivoapproaches in humans to understand the functional impact of the at-risk allele. Thus, we showedin vi…

0301 basic medicine[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology[SDV.NEU.PC] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Psychology and behaviorbrain imagingAmygdala03 medical and health sciences0302 clinical medicineNeuroimagingSynaptic vesicle dockingmedicinegeneticsBipolar disorderAllelePrefrontal cortexComputingMilieux_MISCELLANEOUSbipolar disorder[SDV.NEU.PC]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Psychology and behavior[SCCO.NEUR]Cognitive science/NeuroscienceGeneral Neuroscience[SCCO.NEUR] Cognitive science/Neuroscience[SDV.NEU.NB] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology[SDV.NEU.SC]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Cognitive SciencesSNAP25medicine.diseaseschizophrenia030104 developmental biologymedicine.anatomical_structureSNARESNAP25CohortPsychologyNeuroscience[SDV.NEU.SC] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Cognitive Sciences030217 neurology & neurosurgeryThe Journal of Neuroscience
researchProduct

Changes in Serine Racemase-Dependent Modulation of NMDA Receptor: Impact on Physiological and Pathological Brain Aging

2018

International audience; The N-methyl-D-Aspartate glutamate receptors (NMDARs) are pivotal for the functional and morphological plasticity that are required in neuronal networks for efficient brain activities and notably for cognitive-related abilities. Because NMDARs are heterogeneous in subunit composition and associated with multiple functional regulatory sites, their efficacy is under the tonic influence of numerous allosteric modulations, whose dysfunction generally represents the first step generating pathological states. Among the enzymatic candidates, serine racemase (SR) has recently gathered an increasing interest considering that it tightly regulates the production of D-serine, an…

0301 basic medicine[SDV]Life Sciences [q-bio]Allosteric regulation[SHS.PSY]Humanities and Social Sciences/PsychologyglutamateDiseaseReviewBiologyBiochemistry Genetics and Molecular Biology (miscellaneous)BiochemistryNMDA receptors[SHS.PSY] Humanities and Social Sciences/Psychology03 medical and health sciences0302 clinical medicineserine racemasemedicineMolecular BiosciencesAmyotrophic lateral sclerosislong term potentiationMolecular BiologyPathologicallcsh:QH301-705.5ComputingMilieux_MISCELLANEOUS[SCCO.NEUR]Cognitive science/Neuroscience[SCCO.NEUR] Cognitive science/NeuroscienceagingGlutamate receptorLong-term potentiationAlzheimer's diseasemedicine.diseaseMESH: NMDA receptors serine racemase aging Alzheimer’s disease D-serine long term potentiation glutamate[SDV] Life Sciences [q-bio]030104 developmental biologylcsh:Biology (General)d-serineSerine racemaseNMDA receptor[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]Neuroscience030217 neurology & neurosurgeryFrontiers in Molecular Biosciences
researchProduct

7-ketocholesterol and 7β-hydroxycholesterol: in vitro and animal models used to characterize their activities and to identify molecules preventing th…

2020

International audience; Oxysterols are molecules derived by the oxidation of cholesterol and can be formed either by auto-oxidation, enzymatically or by both processes. Among the oxysterols formed by auto-oxidation, 7-ketocholesterol and 7beta-hydroxycholesterol are the main forms generated. These oxysterols, formed endogenously and brought in large quantities by certain foods, have major cytotoxic properties. They are powerful inducers of oxidative stress, inducing dysfunction of organelles (mitochondria, lysosomes and peroxisomes) that can cause cell death. These molecules are often identified in increased amounts in common pathological states such as cardiovascular diseases, certain eye …

0301 basic medicine[SDV]Life Sciences [q-bio]CellmicrofluidicMitochondrionPharmacologiemedicine.disease_causeBiochemistry0302 clinical medicineanimal modèleKetocholesterolsComputingMilieux_MISCELLANEOUSCells CulturedsignalingpathwaysCell DeathChemistry7β-hydroxycholesterolNeurodegenerative DiseasesPeroxisomeanimal models3. Good healthmedicine.anatomical_structureBiochemistryCardiovascular Diseases030220 oncology & carcinogenesisToxicity[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]modèle cellulaireSignal transductionProgrammed cell deathCataractCell Line03 medical and health sciencesPharmaceutical sciencesCell Line TumormedicineAnimalsHumans[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biologyhydroxycholestérol7-ketocholesterolPharmacologyOrganelles7-ketocholesterol;7β-hydroxycholesterol;cell models;animal models;microfluidic;signalingpathwaysInflammatory Bowel DiseasesIn vitroHydroxycholesterolscell modelsDisease Models Animal030104 developmental biologyvoie de signalisationSciences pharmaceutiques[SDV.AEN]Life Sciences [q-bio]/Food and NutritionOxidative stress
researchProduct

Neuronal Cytoskeleton in Intellectual Disability: From Systems Biology and Modeling to Therapeutic Opportunities

2021

Intellectual disability (ID) is a pathological condition characterized by limited intellectual functioning and adaptive behaviors. It affects 1–3% of the worldwide population, and no pharmacological therapies are currently available. More than 1000 genes have been found mutated in ID patients pointing out that, despite the common phenotype, the genetic bases are highly heterogeneous and apparently unrelated. Bibliomic analysis reveals that ID genes converge onto a few biological modules, including cytoskeleton dynamics, whose regulation depends on Rho GTPases transduction. Genetic variants exert their effects at different levels in a hierarchical arrangement, starting from the molecular lev…

0301 basic medicineactin cytoskeletonReview0302 clinical medicineBorderline intellectual functioningIntellectual disabilityDisabilità Intellettiva GTPasi CitoscheletroBiology (General)CytoskeletonSpectroscopyNeuronseducation.field_of_studysystems biologyCognitionGeneral MedicinePhenotypeComputer Science ApplicationsChemistryPhenotypeintellectual disabilitySignal TransductionBoolean modelingQH301-705.5NeurogenesisIn silicoSystems biologyPopulationBiologyCatalysismicrotubulesInorganic Chemistry03 medical and health sciencesmedicineAnimalsHumansPhysical and Theoretical ChemistryeducationQD1-999Molecular BiologyGTPase signalingsmall Rho GTPasesOrganic Chemistrypharmacological modulationprotein:protein interaction networkActin cytoskeletonmedicine.disease030104 developmental biologySynapsesneuronal networksNeuroscience030217 neurology & neurosurgery
researchProduct

Oxidative Stress, Neuroinflammation and Mitochondria in the Pathophysiology of Amyotrophic Lateral Sclerosis

2020

Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron (MN) disease. Its primary cause remains elusive, although a combination of different causal factors cannot be ruled out. There is no cure, and prognosis is poor. Most patients with ALS die due to disease-related complications, such as respiratory failure, within three years of diagnosis. While the underlying mechanisms are unclear, different cell types (microglia, astrocytes, macrophages and T cell subsets) appear to play key roles in the pathophysiology of the disease. Neuroinflammation and oxidative stress pave the way leading to neurodegeneration and MN death. ALS-associated mitochondrial dysfunction occurs at different le…

0301 basic medicineamyotrophic lateral sclerosisPhysiologyClinical BiochemistryReviewDiseaseMitochondrionmedicine.disease_causeBiochemistryneuroinflammationNeurologia03 medical and health sciences0302 clinical medicineoxidative stressMedicineAmyotrophic lateral sclerosisMolecular BiologyNeuroinflammationMicrogliabusiness.industrylcsh:RM1-950NeurodegenerationCell Biologymedicine.diseasePatologiaPathophysiologymitochondrialcsh:Therapeutics. Pharmacology030104 developmental biologymedicine.anatomical_structuremotor neuron diseasebusinessNeuroscience030217 neurology & neurosurgeryOxidative stressAntioxidants
researchProduct

Therapeutic alternative of the ketogenic Mediterranean diet to improve mitochondrial activity in Amyotrophic Lateral Sclerosis (ALS): A Comprehensive…

2019

Abstract Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease which is pathogenically based on the mitochondrial alteration of motor neurons, causing progressive neuron death. While ALS is characterized by enormous oxidative stress, the Mediterranean diet has been seen to have high antioxidant power. Therefore, the aim of this study is to determine how the Mediterranean diet can improve mitochondrial activity, establishing the specific nutrients and, in addition, observing the pathogenic mechanisms related to the disease that would achieve this improvement. To this end, a comprehensive review of the literature was performed using PubMed. KBs have been observed to ha…

0301 basic medicineamyotrophic lateral sclerosismitochondria ; mediterranean diet ; amyotrophic lateral sclerosis ; ketone bodiesMediterranean dietReviewslcsh:TX341-641ReviewDiseaseMitochondrionBioinformaticsmedicine.disease_causeNeuroprotection03 medical and health sciences0302 clinical medicineKetogenesisMedicineAmyotrophic lateral sclerosisbusiness.industryfood and beveragesmediterranean dietmedicine.diseasemitochondria030104 developmental biologyketone bodiesbusinessNeuron deathlcsh:Nutrition. Foods and food supply030217 neurology & neurosurgeryOxidative stressFood ScienceFood Science & Nutrition
researchProduct

Selective α-synuclein knockdown in monoamine neurons by intranasal oligonucleotide delivery: potential therapy for parkinson’s disease

2018

Progressive neuronal death in brainstem nuclei and widespread accumulation of α-synuclein are neuropathological hallmarks of Parkinson’s disease (PD). Reduction of α-synuclein levels is therefore a potential therapy for PD. However, because α-synuclein is essential for neuronal development and function, α-synuclein elimination would dramatically impact brain function. We previously developed conjugated small interfering RNA (siRNA) sequences that selectively target serotonin (5-HT) or norepinephrine (NE) neurons after intranasal administration. Here, we used this strategy to conjugate inhibitory oligonucleotides, siRNA and antisense oligonucleotide (ASO), with the triple monoamine reuptake …

0301 basic medicineanimal diseasesDopamineOligonucleotidesGene ExpressionPharmacologySynaptic TransmissionPrefrontal cortexMiceDA neurotransmission0302 clinical medicineDrug DiscoveryMonoaminergicNeural PathwaysRNA Small InterferingCells Cultured5-HT neurotransmissionChemistryGene Transfer TechniquesParkinson DiseaseVentral tegmental areaSubstantia Nigramedicine.anatomical_structureCaudate putamenGene Knockdown Techniquesalpha-SynucleinMolecular MedicineRNA InterferenceOriginal ArticleMonoamine reuptake inhibitormedicine.drugSignal TransductionSerotoninSubstantia nigraASO03 medical and health sciencesProsencephalonα-synucleinDopamineIntranasal administrationGeneticsmedicineAnimalsHumansMolecular BiologyAdministration IntranasalPharmacologyPars compactaDopaminergic NeuronsGenetic TherapyCorpus Striatumnervous system diseases030104 developmental biologyMonoamine neurotransmitterGene Expression Regulationnervous systemsiRNAParkinson’s diseaseLocus coeruleus030217 neurology & neurosurgery
researchProduct