Search results for "Neutrino Oscillations"
showing 10 items of 41 documents
Recent results from Borexino and the first real time measure of solar pp neutrinos
2014
International audience; The Borexino detector was built starting from 1996 in the underground hall C of Gran Sasso National Laboratory (LNGS) in Italy under about 1400 m of rock (3800 m.w.e) and it is mostly aimed to the study in real-time of the low-energy solar neutrinos.Since the beginning of data taking, in May 2007, the unprecedented detector radio-purity made the performances of the detector unique: a milestone has been very recently achieved with the measurement of solar pp neutrino flux, providing the first direct observation in real time of the key fusion reaction powering the Sun.In this contribution the most important Borexino achievements to the fields of solar, geo-neutrino and…
Review of Particle Physics
2020
The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 2,143 new measurements from 709 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, …
Seasonal Modulation of the $^7$Be Solar Neutrino Rate in Borexino
2017
We detected the seasonal modulation of the $^7$Be neutrino interaction rate with the Borexino detector at the Laboratori Nazionali del Gran Sasso in Italy. The period, amplitude, and phase of the observed time evolution of the signal are consistent with its solar origin, and the absence of an annual modulation is rejected at 99.99\% C.L. The data are analyzed using three methods: the sinusoidal fit, the Lomb-Scargle and the Empirical Mode Decomposition techniques, which all yield results in excellent agreement.
IceCube Oscillations: 3 years muon neutrino disappearance data
2015
In the 1990s, Super-Kamiokande’s measurements of atmospheric neutrinos led to the acceptance of the mass-induced oscillation model. As of today, the three mixing angles, the solar mass splitting and the absolute value of the atmospheric mass splitting that control the oscillation phenomenon have been measured. We present a measurement of neutrino oscillations via atmospheric muon neutrino disappearance with three years of data of the completed IceCube neutrino detector. DeepCore, a region of denser instrumentation, enables the detection and reconstruction of atmospheric muon neutrinos between 10 GeV and 100 GeV, where a strong disappearance signal is expected.
Neutrino physics from cosmological observables and oscillation experiments
2018
Aquesta tesi se centra en la física dels neutrins. En particular, se centra en l'estudi de les oscil·lacions de sabor, el paper dels neutrins relíquia en alguns escenaris cosmològics i la interacció entre aquests dos temes. Els neutrins es troben entre les partícules elementals més conegudes. Presenten comportaments interessants, com les seves oscil·lacions, i constitueixen un dels vincles entre les diferents àrees de la física. A través d'aquest document explotem la seva relació amb la cosmologia, amb especial èmfasi en l'Univers primerenc, encara que també parlem de projectes relacionats amb les últimes etapes de la història de l'Univers. En la primera part de la tesi presentem un ajustam…
Measurement of atmospheric neutrino oscillations with three years of data from the full sky.
2018
Initial release related to the measurement of atmospheric neutrino oscillations using three years of neutrino data from the full sky. IceCube results published in Physical Review Letters are competitive for the first time with the best measurements to date. Release limited to Δχ² maps in the (Δm², sin²(θ_23)) space for both the normal and inverted mass ordering. Additional information will be provided as follow-up data analyses are completed by the IceCube Collaboration.
Coherence in neutrino oscillations
2011
The theory of neutrino oscillations has turned out to be the most reasonable explanation to the observed violations in lepton number conservation of solar and atmospheric neutrino fluxes. A derivation of the most important results of this theory is first given using a plane wave treatment and subsequently using a three-dimensional shape-independent wave packet approach. Both methods give the same oscillation patterns, but only the latter one serves as a decent starting point for analyzing coherence in neutrino oscillations. A numerical analysis of the oscillation patterns on various distance scales is also given to graphically illustrate the phenomenon of neutrino oscillation and loss of co…
Chi2 profiles from Valencia neutrino global fit
2021
We provide here the 1D and 2D chi2 profiles from our most recent global fit of neutrino oscillation data (DOI:10.1007/JHEP02(2021)071). The files are available at https://globalfit.astroparticles.es/.
Phenomenology of non-standard neutrino interactions
2016
Today neutrino physics is in a privileged position within the fascinating field of particle physics. From the discovery of neutrino oscillations by Super-Kamiokande in 1998, the door to physics beyond the Standard Model (SM in what follows) has been opened. This fact implies that neutrinos have to be massive in opposition to the Standard Model assumption. However, this is not a surprise completely, but it was already hinted from theoretical and experimental observations in the two decades prior to the discovery of the oscillatory phenomenon, as neutrino masses included in unification models or the observed deficit of the atmospheric and solar neutrino fluxes. As a consequence of this new pa…
Deep Underground Neutrino Experiment (DUNE) Near Detector Conceptual Design Report
2021
The Deep Underground Neutrino Experiment (DUNE) is an international, world-class experiment aimed at exploring fundamental questions about the universe that are at the forefront of astrophysics and particle physics research. DUNE will study questions pertaining to the preponderance of matter over antimatter in the early universe, the dynamics of supernovae, the subtleties of neutrino interaction physics, and a number of beyond the Standard Model topics accessible in a powerful neutrino beam. A critical component of the DUNE physics program involves the study of changes in a powerful beam of neutrinos, i.e., neutrino oscillations, as the neutrinos propagate a long distance. The experiment co…