Search results for "Neutrino detector"

showing 10 items of 222 documents

High energy neutrino telescopes in the Northern Hemisphere

2012

We review the status and results of the high energy neutrino telescopes in the Northern Hemisphere, namely ANTARES and Baikal (NT200+).

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsNuclear and High Energy PhysicsPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaDark matterAstrophysics::Instrumentation and Methods for AstrophysicsFOS: Physical sciencesAstronomyFísicaAstrophysicsSolar neutrino problemPhysics::GeophysicsNeutrino detectorMeasurements of neutrino speedHigh Energy Physics::ExperimentNeutrino astronomyNeutrinoAstrophysics - High Energy Astrophysical PhenomenaNeutrino oscillationInstrumentationAstrophysics::Galaxy Astrophysics
researchProduct

Search for Core-Collapse Supernovae using the MiniBooNE Neutrino Detector

2009

We present a search for core-collapse supernovae in the Milky Way galaxy, using the MiniBooNE neutrino detector. No evidence is found for core-collapse supernovae occurring in our Galaxy in the period from December 14, 2004 to July 31, 2008, corresponding to 98% live time for collection. We set a limit on the core-collapse supernova rate out to a distance of 13.4 kpc to be less than 0.69 supernovae per year at 90% C. L.

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsNuclear and High Energy PhysicsResearch Groups and Centres\Physics\Low Temperature PhysicsFaculty of Science\PhysicsMilky WayAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomyAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsGalaxyMiniBooNESupernovaNeutrino detectorGravitational collapseHigh Energy Physics::ExperimentVariable starNeutrinoAstrophysics - High Energy Astrophysical PhenomenaAstrophysics::Galaxy Astrophysics
researchProduct

Unifying leptogenesis, dark matter and high-energy neutrinos with right-handed neutrino mixing via Higgs portal

2016

We revisit a model in which neutrino masses and mixing are described by a two right-handed (RH) neutrino seesaw scenario, implying a strictly hierarchical light neutrino spectrum. A third decoupled RH neutrino, $N_{\rm DM}$ with mass $M_{\rm DM}$, plays the role of cold dark matter (DM) and is produced by the mixing with a source RH neutrino, $N_{\rm S}$ with mass $M_{\rm S}$, induced by Higgs portal interactions. The same interactions are also responsible for $N_{\rm DM}$ decays. We discuss in detail the constraints coming from DM abundance and stability conditions, showing that in the hierarchical case ($M_{\rm DM} \gg M_{\rm S}$) there is an allowed window on $M_{\rm DM}$, which necessar…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsParticle physicsCold dark matter010308 nuclear & particles physicsPhysics beyond the Standard ModelAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesAstronomy and Astrophysics7. Clean energy01 natural sciencesHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Baryon asymmetryNeutrino detector13. Climate actionLeptogenesis0103 physical sciencesInvariant massHigh Energy Physics::ExperimentNeutrino010306 general physicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Production of keV sterile neutrinos in supernovae: New constraints and gamma-ray observables

2019

We study the production of sterile neutrinos in supernovae, focusing in particular on the keV--MeV mass range, which is the most interesting range if sterile neutrinos are to account for the dark matter in the Universe. Focusing on the simplest scenario in which sterile neutrinos mixes only with muon or tau neutrino, we argue that the production of keV--MeV sterile neutrinos can be strongly enhanced by a Mikheyev--Smirnov--Wolfenstein (MSW) resonance, so that a substantial flux is expected to emerge from a supernova, even if vacuum mixing angles between active and sterile neutrinos are tiny. Using energetics arguments, this yields limits on the sterile neutrino parameter space that reach do…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSterile neutrinoParticle physicsPhysics::Instrumentation and Detectors010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaSolar neutrinoHigh Energy Physics::PhenomenologyFOS: Physical sciencesSolar neutrino problemComputer Science::Digital Libraries7. Clean energy01 natural sciencesCosmic neutrino backgroundHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Neutrino detector0103 physical sciencesMeasurements of neutrino speedHigh Energy Physics::ExperimentNeutrino astronomyNeutrinoAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsPhysical Review D
researchProduct

Probing decaying heavy dark matter with the 4-year IceCube HESE data

2017

After the first four years of data taking, the IceCube neutrino telescope has observed 54 high-energy starting events (HESE) with deposited energies between 20 TeV and 2 PeV. The background from atmospheric muons and neutrinos is expected to be of about 20 events, all below 100 TeV, thus pointing towards the astrophysical origin of about 8 events per year in that data set. However, their precise origin remains unknown. Here, we perform a detailed analysis of this event sample (considering simultaneously the energy, hemisphere and topology of the events) by assuming two contributions for the signal events: an isotropic power-law flux and a flux from decaying heavy dark matter. We fit the mas…

High Energy Astrophysical Phenomena (astro-ph.HE)QuarkPhysicsSpectral indexMuon010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesFluxAstronomy and AstrophysicsAstrophysics01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Neutrino detector13. Climate action0103 physical sciencesHigh Energy Physics::ExperimentNeutrinoNeutrino astronomyAstrophysics - High Energy Astrophysical Phenomena010306 general physicsJournal of Cosmology and Astroparticle Physics
researchProduct

Decoherent neutrino mixing, dark energy, and matter-antimatter asymmetry

2004

A CPT violating decoherence scenario can easily account for all the experimental evidence in the neutrino sector including LSND. In this work it is argued that this framework can also accommodate the Dark Energy content of the Universe, as well as the observed matter-antimatter asymmetry.

High Energy Physics - TheoryPhysics::General PhysicsNuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsCPT symmetrymedia_common.quotation_subjectFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)General Relativity and Quantum CosmologyCosmologyNuclear physicsHigh Energy Physics - Phenomenology (hep-ph)Neutrino oscillationComputer Science::Databasesmedia_commonPhysicsHigh Energy Physics::PhenomenologyFísicaUniverseHigh Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)Neutrino detectorAntimatterDark energyHigh Energy Physics::ExperimentNeutrinoPhysical Review D
researchProduct

Understanding the detector behavior through Montecarlo and calibration studies in view of the SOX measurement

2015

International audience; Borexino is an unsegmented neutrino detector operating at LNGS in central Italy. The experiment has shown its performances through its unprecedented accomplishments in the solar and geoneutrino detection. These performances make it an ideal tool to accomplish a state- of-the-art experiment able to test the existence of sterile neutrinos (SOX experiment). For both the solar and the SOX analysis, a good understanding of the detector response is fundamental. Consequently, calibration campaigns with radioactive sources have been performed over the years. The calibration data are of extreme importance to develop an accurate Monte Carlo code. This code is used in all the n…

HistoryGeoneutrinoCalibration (statistics)Physics::Instrumentation and DetectorsNuclear engineeringMonte Carlo method01 natural sciencesprogrammingParticle detectorEducationPhysics and Astronomy (all)0103 physical sciencesddc:530[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsSimulationBorexinoPhysics010308 nuclear & particles physicsDetectorneutrino: sterilecalibrationComputer Science::Computers and SocietyComputer Science ApplicationsNeutrino detectorBorexinoHigh Energy Physics::ExperimentNeutrinonumerical calculations: Monte Carloperformance
researchProduct

High significance measurement of the terrestrial neutrino flux with the Borexino detector

2015

International audience; We review the geoneutrino measurement with Borexino from 2056 days of data taking.

HistoryParticle physicsSolar neutrinoFlux010502 geochemistry & geophysics01 natural sciencesneutrino: fluxNOEducationNuclear physicstalk: Torino 2015/09/07Physics and Astronomy (all)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530Borexino0105 earth and related environmental sciencesPhysics010308 nuclear & particles physicsDetectorComputer Science ApplicationsNeutrino detectorMeasurements of neutrino speedBorexinoneutrino: geophysicsNeutrinoexperimental results
researchProduct

SOX: search for short baseline neutrino oscillations with Borexino

2015

International audience; The Borexino detector has convincingly shown its outstanding performances in the low energy regime through its accomplishments in the observation and study of the solar and geo neutrinos. It is then an ideal tool to perform a state of the art source-based experiment for testing the longstanding hypothesis of a fourth sterile neutrino with ~ eV(2) mass, as suggested by several anomalies accumulated over the past three decades in source, reactor, and accelerator-based experiments. The SOX project aims at successively deploying two intense radioactive sources, made of Cerium (antineutrino) and Chromium (neutrino), respectively, in a dedicated pit located beneath the det…

HistoryParticle physicsSterile neutrinochromium: nuclidePhysics::Instrumentation and DetectorsSolar neutrino[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyEducationNuclear physicsPhysics and Astronomy (all)0103 physical sciencesddc:530[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNeutrino oscillationBorexinoactivity reportPhysics010308 nuclear & particles physicsHigh Energy Physics::Phenomenologyneutrino: particle sourceSolar neutrino problemneutrino: sterilesensitivityComputer Science ApplicationsNeutrino detector13. Climate actioncerium: nuclideMeasurements of neutrino speedHigh Energy Physics::ExperimentBorexinoneutrino: oscillationNeutrinoantineutrino: particle source
researchProduct

Solar neutrino detectors as sterile neutrino hunters

2016

International audience; The large size and the very low radioactive background of solar neutrino detectors such as Borexino at the Gran Sasso Laboratory in Italy offer a unique opportunity to probe the existence of neutrino oscillations into new sterile components by means of carefully designed and well calibrated anti-neutrino and neutrino artificial sources. In this paper we briefly summarise the key elements of the SOX experiment, a program for the search of sterile neutrinos (and other short distance effects) by means of a (144)Ce-(144)Pr anti-neutrino source and, possibly in the medium term future, with a (51)Cr neutrino source.

HistorySterile neutrinoParticle physicsneutrino: solarPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical Phenomena01 natural sciences7. Clean energyEducationPhysics and Astronomy (all)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNeutrino oscillationnuclideBorexinoPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologySolar neutrino problemneutrino: sterileComputer Science ApplicationspraseodymiumGran Sassoneutrino: detectorNeutrino detectorcerium: nuclideHigh Energy Physics::Experimentneutrino: oscillationNeutrino astronomyNeutrinoantineutrino: particle source[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct