Search results for "Neutrino detector"
showing 10 items of 222 documents
Coherent elastic neutrino-nucleus scattering at the European Spallation Source
2020
The European Spallation Source (ESS), presently well on its way to completion, will soon provide the most intense neutron beams for multi-disciplinary science. Fortuitously, it will also generate the largest pulsed neutrino flux suitable for the detection of Coherent Elastic Neutrino-Nucleus Scattering (CE$\nu$NS), a process recently measured for the first time at ORNL's Spallation Neutron Source. We describe innovative detector technologies maximally able to profit from the order-of-magnitude increase in neutrino flux provided by the ESS, along with their sensitivity to a rich particle physics phenomenology accessible through high-statistics, precision CE$\nu$NS measurements.
Radioactivity control strategy for the JUNO detector
2021
JUNO is a massive liquid scintillator detector with a primary scientific goal of determining the neutrino mass ordering by studying the oscillated anti-neutrino flux coming from two nuclear power plants at 53 km distance. The expected signal anti-neutrino interaction rate is only 60 counts per day, therefore a careful control of the background sources due to radioactivity is critical. In particular, natural radioactivity present in all materials and in the environment represents a serious issue that could impair the sensitivity of the experiment if appropriate countermeasures were not foreseen. In this paper we discuss the background reduction strategies undertaken by the JUNO collaboration…
Detecting the upturn of the solar 8B neutrino spectrum with LENA
2014
LENA ( L ow E nergy N eutrino A stronomy) has been proposed as a next generation 50 kt liquid scintillator detector. The large target mass allows a high precision measurement of the solar 8 B neutrino spectrum, with an unprecedented energy threshold of 2 MeV. Hence, it can probe the MSW-LMA prediction for the electron neutrino survival probability in the transition region between vacuum and matter-dominated neutrino oscillations. Based on Monte Carlo simulations of the solar neutrino and the corresponding background spectra, it was found that the predicted upturn of the solar 8 B neutrino spectrum can be detected with 5 σ significance after 5 years.
Calibration strategy of the JUNO experiment
2021
We present the calibration strategy for the 20 kton liquid scintillator central detector of the Jiangmen Underground Neutrino Observatory (JUNO). By utilizing a comprehensive multiple-source and multiple-positional calibration program, in combination with a novel dual calorimetry technique exploiting two independent photosensors and readout systems, we demonstrate that the JUNO central detector can achieve a better than 1% energy linearity and a 3% effective energy resolution, required by the neutrino mass ordering determination. [Figure not available: see fulltext.]
Toroidal magnetized iron neutrino detector for a neutrino factory
2013
A neutrino factory has unparalleled physics reach for the discovery and measurement of CP violation in the neutrino sector. A far detector for a neutrino factory must have good charge identification with excellent background rejection and a large mass. An elegant solution is to construct a magnetized iron neutrino detector (MIND) along the lines of MINOS, where iron plates provide a toroidal magnetic field and scintillator planes provide 3D space points. In this paper, the current status of a simulation of a toroidal MIND for a neutrino factory is discussed in light of the recent measurements of large theta(13). The response and performance using the 10 GeV neutrino factory configuration ar…
High intensity neutrino oscillation facilities in Europe
2013
The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Frejus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of mu(+) and mu(-) beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neu…
Oscillation effects on high-energy neutrino fluxes from astrophysical hidden sources
2006
High-energy neutrinos are expected to be produced in a vareity of astrophysical sources as well as in optically thick hidden sources. We explore the matter-induced oscillation effects on emitted neutrino fluxes of three different flavors from the latter class. We use the ratio of electron and tau induced showers to muon tracks, in upcoming neutrino telescopes, as the principal observable in our analysis. This ratio depends on the neutrino energy, density profile of the sources and on the oscillation parameters. The largely unknown flux normalization drops out of our calculation and only affects the statistics. For the current knowledge of the oscillation parameters we find that the matter-i…
If sterile neutrinos exist, how can one determine the total solar neutrino fluxes?
2002
The 8B solar neutrino flux inferred from a global analysis of solar neutrino experiments is within 11% (1 sigma) of the predicted standard solar model value if only active neutrinos exist, but could be as large as 1.7 times the standard prediction if sterile neutrinos exist. We show that the total 8B neutrino flux (active plus sterile neutrinos) can be determined experimentally to about 10% (1 sigma) by combining charged current measurements made with the KamLAND reactor experiment and with the SNO CC solar neutrino experiment, provided the LMA neutrino oscillation solution is correct and the simulated performance of KamLAND is valid. Including also SNO NC data, the sterile component of the…
A search for time dependent neutrino emission from microquasars with the ANTARES telescope
2014
[EN] Results are presented on a search for neutrino emission from a sample of six microquasars, based on the data collected by the ANTARES neutrino telescope between 2007 and 2010. By means of appropriate time cuts, the neutrino search has been restricted to the periods when the acceleration of relativistic jets was taking place at the microquasars under study. The time cuts have been chosen using the information from the X-ray telescopes RXTE/ASM and Swift/BAT, and, in one case, the gamma-ray telescope Fermi/LAT. No statistically significant excess has been observed, thus upper limits on the neutrino fluences have been derived and compared to the predictions by models. Constraints have bee…
First search for extremely high energy cosmogenic neutrinos with the IceCube Neutrino Observatory.
2010
We report on the results of the search for extremely-high energy (EHE) neutrinos with energies above $10^7$ GeV obtained with the partially ($\sim$30%) constructed IceCube in 2007. From the absence of signal events in the sample of 242.1 days of effective livetime, we derive a 90% C.L. model independent differential upper limit based on the number of signal events per energy decade at $E^2 \phi_{\nu_e+\nu_\mu+\nu_\tau}\simeq 1.4 \times 10^{-6}$ GeV cm$^{-2}$ sec$^{-1}$ sr$^{-1}$ for neutrinos in the energy range from $3\times10^7$ to $3\times10^9$ GeV.