Search results for "Neutrino detectors"
showing 10 items of 26 documents
Calibration strategy of the JUNO experiment
2021
We present the calibration strategy for the 20 kton liquid scintillator central detector of the Jiangmen Underground Neutrino Observatory (JUNO). By utilizing a comprehensive multiple-source and multiple-positional calibration program, in combination with a novel dual calorimetry technique exploiting two independent photosensors and readout systems, we demonstrate that the JUNO central detector can achieve a better than 1% energy linearity and a 3% effective energy resolution, required by the neutrino mass ordering determination. [Figure not available: see fulltext.]
Journal of High Energy Physics
2014
The Double Chooz experiment presents improved measurements of the neutrino mixing angle $\theta_{13}$ using the data collected in 467.90 live days from a detector positioned at an average distance of 1050 m from two reactor cores at the Chooz nuclear power plant. Several novel techniques have been developed to achieve significant reductions of the backgrounds and systematic uncertainties with respect to previous publications, whereas the efficiency of the $\bar\nu_{e}$ signal has increased. The value of $\theta_{13}$ is measured to be $\sin^{2}2\theta_{13} = 0.090 ^{+0.032}_{-0.029}$ from a fit to the observed energy spectrum. Deviations from the reactor $\bar\nu_{e}$ prediction observed ab…
Combined Analysis of Neutrino and Antineutrino Oscillations at T2K.
2017
T2K reports its first results in the search for CP violation in neutrino oscillations using appearance and disappearance channels for neutrino- and antineutrino-mode beams. The data include all runs from January 2010 to May 2016 and comprise 7.482 ×10^(20) protons on target in neutrino mode, which yielded in the far detector 32 e-like and 135 μ-like events, and 7.471 × 10^(20) protons on target in antineutrino mode, which yielded 4 e-like and 66 μ-like events. Reactor measurements of sin(2)2θ(13) have been used as an additional constraint. The one-dimensional confidence interval at 90% for the phase δCP spans the range (−3.13, −0.39) for normal mass ordering. The CP conservation hypothesis …
DARWIN: Towards the ultimate dark matter detector
2016
DARk matter WImp search with liquid xenoN (DARWIN) will be an experiment for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber at its core. Its primary goal will be to explore the experimentally accessible parameter space for Weakly Interacting Massive Particles (WIMPs) in a wide mass-range, until neutrino interactions with the target become an irreducible background. The prompt scintillation light and the charge signals induced by particle interactions in the xenon will be observed by VUV sensitive, ultra-low background photosensors. Besides its excellent sensitivity to WIMPs above a mass of 5 GeV/c2, such a detector with its large mass, low-energy …
A 4 tonne demonstrator for large-scale dual-phase liquid argon time projection chambers
2018
A 10 kilo-tonne dual-phase liquid argon TPC is one of the detector options considered for the Deep Underground Neutrino Experiment (DUNE). The detector technology relies on amplification of the ionisation charge in ultra-pure argon vapour and offers several advantages compared to the traditional single-phase liquid argon TPCs. A 4.2 tonne dual-phase liquid argon TPC prototype, the largest of its kind, with an active volume of \three has been constructed and operated at CERN. In this paper we describe in detail the experimental setup and detector components as well as report on the operation experience. We also present the first results on the achieved charge amplification, prompt scintillat…
Sensitivity on earth core and mantle densities using atmospheric neutrinos
2009
11 pages, 11 figures.-- ISI article identifier:000267776100008 .-- ArXiv pre-print avaible at: http://arxiv.org/abs/0904.0796
Determination of the $\theta_{23}$ octant in LBNO
2014
According to the recent results of the neutrino oscillation experiment MINOS, the neutrino mixing angle $\theta_{23}$ may not be maximal ($45^{\circ}$). Two nearly degenerate solutions are possible, one in the lower octant (LO) where $\theta_{23}45^{\circ}$. Long baseline experiments measuring the $\nu_{\mu}\rightarrow\nu_{e}$ are capable of resolving this degeneracy. In this work we study the potential of the planned European LBNO experiment to distinguish between the LO and HO solutions.
Determination of the θ23 octant in long baseline neutrino experiments within and beyond the standard model
2018
The recent data indicate that the neutrino mixing angle $\theta_{23}$ deviates from the maximal-mixing value of 45$^\circ$, showing two nearly degenerate solutions, one in the lower octant (LO) ($\theta_{23}45^\circ$). We investigate, using numerical simulations, the prospects for determining the octant of $\theta_{23}$ in the future long baseline oscillation experiments. We present our results as contour plots on the ($\theta_{23}-45^\circ$, $\delta$)--plane, where $\delta$ is the $CP$ phase, showing the true values of $\theta_{23}$ for which the octant can be experimentally determined at 3$\,\sigma$, 2$\,\sigma$ and 1$\,\sigma$ confidence level. In particular, we study the impact of the p…
Performance study of a 3×1×1 m3 dual phase liquid Argon Time Projection Chamber exposed to cosmic rays
2021
This work would not have been possible without the support of the Swiss National Science Foundation, Switzerland; CEA and CNRS/IN2P3, France; KEK and the JSPS program, Japan; Ministerio de Ciencia e Innovacion in Spain under grants FPA2016-77347-C2, SEV-2016-0588 and MdM-2015-0509, Comunidad de Madrid, the CERCA program of the Generalitat de Catalunya and the fellowship (LCF/BQ/DI18/11660043) from "La Caixa" Foundation (ID 100010434); the Programme PNCDI III, CERN-RO, under Contract 2/2020, Romania; the U.S. Department of Energy under Grant No. DE-SC0011686. This project has received funding from the European Union's Horizon 2020 Research and Innovation program under Grant Agreement no. 654…
The mass-hierarchy and CP-violation discovery reach of the LBNO long-baseline neutrino experiment.
2014
The next generation neutrino observatory proposed by the LBNO collaboration will address fundamental questions in particle and astroparticle physics. The experiment consists of a far detector, in its first stage a 20 kt LAr double phase TPC and a magnetised iron calorimeter, situated at 2300 km from CERN and a near detector based on a high-pressure argon gas TPC. The long baseline provides a unique opportunity to study neutrino flavour oscillations over their 1st and 2nd oscillation maxima exploring the $L/E$ behaviour, and distinguishing effects arising from $\delta_{CP}$ and matter. In this paper we have reevaluated the physics potential of this setup for determining the mass hierarchy (M…