Search results for "Neutron Stars"
showing 10 items of 47 documents
The transient gravitational-wave sky
2013
Interferometric detectors will very soon give us an unprecedented view of the gravitational-wave sky, and in particular of the explosive and transient Universe. Now is the time to challenge our theoretical understanding of short-duration gravitational-wave signatures from cataclysmic events, their connection to more traditional electromagnetic and particle astrophysics, and the data analysis techniques that will make the observations a reality. This paper summarizes the state of the art, future science opportunities, and current challenges in understanding gravitational-wave transients.
A mathematical description of glitches in neutron stars
2017
In a pulsar, there are gaps and difficulties in our knowledge of glitches, mainly because of the absence of information about the physics of the matter of the star. This has motivated several authors to suggest dynamical models that interpret most of the astronomical data. Many predictions are based on the assumption that the inner part is analogous to the structure of matter of superfluids. Here, we illustrate a new mathematical model, partially inspired by the dynamics of superfluid helium. We obtain two evolution equations for the angular velocities (of the crust and of superfluid), which are supported by another evolution equation for the average vortex line length per unit volume. This…
PBH assisted search for QCD axion dark matter
2022
The entropy production prior to BBN era is one of ways to prevent QCD axion with the decay constant $F_{a}\in[10^{12}{\rm GeV},10^{16}{\rm GeV}]$ from overclosing the universe when the misalignment angle is $\theta_{\rm i}=\mathcal{O}(1)$. As such, it is necessarily accompanied by an early matter-dominated era (EMD) provided the entropy production is achieved via the decay of a heavy particle. In this work, we consider the possibility of formation of primordial black holes during the EMD era with the assumption of the enhanced primordial scalar perturbation on small scales ($k>10^{4}{\rm Mpc}^{-1}$). In such a scenario, it is expected that PBHs with axion halo accretion develop to ultracomp…
Relativistically Smeared Iron Lines in the Spectra of Bright NS LMXB
2009
We present preliminary results of a study on three bright accreting low-mass X-ray binaries hosting a neutron star, based on XMM-Newton observations. These sources (GX 340+0, GX 349+2 and SAX J1808.4-3658) show a broad Fe K alpha iron line in their spectra. This feature can be well described by relativistic line profile in each case; the good spectral resolution of the EPIC/PN and the high statistics spectra allow to put very good constraints on the disk geometry and ionization stage of the reflecting matter.
A self-consistent approach to the reflection component in 4U 1705-44
2010
High-resolution spectroscopy has recently revealed in many neutron-star Low-Mass X-ray binaries that the shape of the broad iron line observed in the 6.4-6.97 keV range is consistently well fitted by a relativistically smeared line profile. We show here spectral fitting results using a newly developed self-consistent reflection model on XMM-Newton data of the LMXB 4U 1705-44 during a period when the source was in a bright soft state. This reflection model adopts a blackbody prescription for the shape of the impinging radiation field, that we physically associate with the boundary layer emission. © 2010 American Institute of Physics.
Optical and ultraviolet pulsed emission from an accreting millisecond pulsar
2021
Ambrosino, F., et al.
Timing Analysis of the 2022 Outburst of the Accreting Millisecond X-Ray Pulsar SAX J1808.4-3658: Hints of an Orbital Shrinking
2022
We present a pulse timing analysis of NICER observations of the accreting millisecond X-ray pulsar SAX J1808.4$-$3658 during the outburst that started on 2022 August 19. Similar to previous outbursts, after decaying from a peak luminosity of $\simeq 1\times10^{36} \, \mathrm{erg \, s^{-1}}$ in about a week, the pulsar entered in a $\sim 1$ month-long reflaring stage. Comparison of the average pulsar spin frequency during the outburst with those previously measured confirmed the long-term spin derivative of $\dot{\nu}_{\textrm{SD}}=-(1.15\pm0.06)\times 10^{-15} \, \mathrm{Hz\,s^{-1}}$, compatible with the spin-down torque of a $\approx 10^{26} \, \mathrm{G \, cm^3}$ rotating magnetic dipole.…
GW190521: A Binary Black Hole Merger with a Total Mass of 150 M⊙
2020
LIGO Scientific Collaboration and Virgo Collaboration: et al.
The complex enviroment around Cir X-1
2008
We present the results of an archival 54 ks long Chandra observation of the peculiar source Cir X–1 during the phase passage 0.223-0.261, based on the phase zero passage at the periastron, of its orbital period. We focus on the study of detected emission and absorption features using the High Energy Transmission Grating Spectrometer on board of the Chandra satellite. A comparative analysis of X-ray spectra, selected at different flux levels of the source, allows us to distinguish between a very hard state, at a low countrate, and a brighter, softer, highly absorbed spectrum during episodes of flaring activity, when the unabsorbed source luminosity is about three times the value in the hard …
Investigation of the p–Σ0 interaction via femtoscopy in pp collisions
2020
This Letter presents the first direct investigation of the p-$\Sigma^{0}$ interaction, using the femtoscopy technique in high-multiplicity pp collisions at $\sqrt{s}$ = 13 TeV measured by the ALICE detector. The $\Sigma^{0}$ is reconstructed via the decay channel to $\Lambda \gamma$, and the subsequent decay of $\Lambda$ to p$\pi^-$. The photon is detected via the conversion in material to e$^{+}$e$^{-}$ pairs exploiting the unique capability of the ALICE detector to measure electrons at low transverse momenta. The measured p-$\Sigma^{0}$ correlation indicates a shallow strong interaction. The comparison of the data to several theoretical predictions obtained employing the $Correlation~Anal…