Search results for "Neutrons"

showing 10 items of 152 documents

Harmonic behavior of trehalose-coated carbon-monoxy-myoglobin at high temperature.

1999

Abstract Embedding biostructures in saccharide glasses protects them against extreme dehydration and/or exposure to very high temperature. Among the saccharides, trehalose appears to be the most effective bioprotectant. In this paper we report on the low-frequency dynamics of carbon monoxy myoglobin in an extremely dry trehalose glass measured by neutron spectroscopy. Under these conditions, the mean square displacements and the density of state function are those of a harmonic solid, up to room temperature, in contrast to D 2 O-hydrated myoglobin, in which a dynamical transition to a nonharmonic regime has been observed at ∼180K (Doster et al., 1989. Nature. 337:754–756). The protective ef…

Drug CompoundingBiophysicsAnalytical chemistrychemistry.chemical_elementTrappingchemistry.chemical_compoundmedicineScattering RadiationDehydrationDeuterium OxideCryopreservationNeutronsMyoglobinSpectrum AnalysisTemperatureTrehaloseWatermedicine.diseaseTrehaloseNeutron spectroscopyCrystallographychemistryMyoglobinHarmonicDensity of statesGlassCarbonResearch ArticleBiophysical journal
researchProduct

Monte Carlo simulation of the energy released by neutrons on organic compounds for EPR dosimetry

2022

In this work we report the analyses of the energy released per unit mass in organic compounds used for EPR dosimetry exposed to neutron beams in order to predict the increase in dose achievable by addition of gadolinium (Gd) inside the pellets. In particular, Monte Carlo (MC) simulations were carried out for alanine, ammonium tartrate and phenolic compounds irradiated with neutron beams with different energy spectra at various depths inside a water phantom. The addition of gadolinium increases sensitivity of these dosimeters to neutrons thanks to the high gadolinium cross section for neutron capture and to the large number of secondary particles (mainly Auger and internal conversion electro…

EPR dosimetry organic compounds Neutrons Monte Carlo simulationsSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)
researchProduct

Phenol compounds for Electron Spin Resonance dosimetry in gamma and neutron field

2016

The use of neutrons for cancer treatments has stimulated the research for beam characterization in order to optimize the therapy procedures in Neutron Capture Therapy (Altieri, 2008). Several research laboratories have shown an increasing interest aimed at extending the applicability of Electron Spin Resonance (ESR) dosimetry to radiotherapy with different types of radiation beams. In particular, ESR spectrometry provides absorbed dose measurements through the detection of the stable free radicals produced by ionizing radiations. The ESR dosimetric method has many advantages such as simple and rapid dose evaluation, the readout procedure is non-destructive, linear response of many organic a…

ESR EPR Solid state dosimeters neutronsSettore FIS/01 - Fisica SperimentaleSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)
researchProduct

The use of gadolinium for ESR dosimetry

2010

The application of gadolinium to sensitize Electron Spin Resonance (ESR) dosimeters is reviewed. This nucleus is chosen because it has very good features in interacting with ionizing radiations. In particular, it has a very high capture cross section for thermal neutrons which favors the interactions of these particles within the detector; moreover, the charged secondary particles released after neutron interactions (mainly Auger and internal conversion electrons) are able to release their energy close the gadolinium site and, therefore, inside the sensitive volume of the detector. Consequently, the addition of gadolinium inside ESR dosimeters produces a significant enhancement of thermal n…

ESR dosimetry organic compounds gadolinium photons yhermal neutrons protonsSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)
researchProduct

Monte Carlo simulation of energy absorbed in phenolic ESR dosimeters added with gadolinium exposed to thermal, epithermal and fast neutrons

2017

Abstract In this work analyses of the energy released per unit mass in phenolic compound exposed to neutron beams were performed with the aim of predicting the increase in dose achievable by addition of gadolinium (Gd) inside the pellets. In particular, Monte Carlo (MC) simulations were carried out for IRGANOX® 1076 phenolic compound irradiated with neutron beams with different energy spectra at various depths inside a water phantom. The addition of gadolinium increases sensitivity of phenolic ESR (electron spin resonance) dosimeters to neutrons thanks to the high gadolinium cross section for neutron capture and to the large number of secondary particles (mainly Auger and internal conversio…

Elastic scatteringNuclear and High Energy PhysicsDosimeterGadoliniumPhysics::Medical PhysicsRadiochemistrySettore FIS/01 - Fisica Sperimentaletechnology industry and agriculturechemistry.chemical_elementNeutron temperatureSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)030218 nuclear medicine & medical imaging03 medical and health sciencesNeutron capture0302 clinical medicineInternal conversionchemistry030220 oncology & carcinogenesisCondensed Matter::Strongly Correlated ElectronsNeutronIrradiationInstrumentationIrganox 1076 Dosimetry Neutrons ESR
researchProduct

New constraints on Lorentz invariance violation from the neutron electric dipole moment

2010

We propose an original test of Lorentz invariance in the interaction between a particle spin and an electromagnetic field and report on a first measurement using ultracold neutrons. We used a high sensitivity neutron electric dipole moment (nEDM) spectrometer and searched for a direction dependence of a nEDM signal leading to a modulation of its magnitude at periods of 12 and 24 hours. We constrain such a modulation to $d_{12} < 15 \times 10^{-25} \ e\,{\rm cm}$ and $d_{24} < 10 \times 10^{-25} \ e\,{\rm cm}$ at 95~\% C.L. The result translates into a limit on the energy scale for this type of Lorentz violation effect at the level of ${\cal E}_{LV} > 10^{10}$~GeV.

Electromagnetic fieldPhysicsSpectrometerNeutron electric dipole moment010308 nuclear & particles physicsFOS: Physical sciencesGeneral Physics and AstronomyLorentz covariance[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesSignalModulationQuantum electrodynamics0103 physical sciencesUltracold neutronsSensitivity (control systems)Nuclear Experiment (nucl-ex)Nuclear Experiment010306 general physicsNuclear Experiment
researchProduct

The measurement programme at the neutron time-of-flight facility n_TOF at CERN

2016

Neutron-induced reaction cross sections are important for a wide variety of research fields ranging from the study of nuclear level densities, nucleosynthesis to applications of nuclear technology like design, and criticality and safety assessment of existing and future nuclear reactors, radiation dosimetry, medical applications, nuclear waste transmutation, accelerator-driven systems and fuel cycle investigations. Simulations and calculations of nuclear technology applications largely rely on evaluated nuclear data libraries. The evaluations in these libraries are based both on experimental data and theoretical models. CERN’s neutron time-of-flight facility n TOF has produced a considerabl…

EngineeringNuclear transmutationQC1-999Nuclear engineering[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciencesNuclear physicsPhysics and Astronomy (all)0103 physical sciences:Física::Electromagnetisme [Àrees temàtiques de la UPC]ddc:530Nuclear Physics - ExperimentNeutron010306 general physicsNeutrons:Energies::Energia nuclear [Àrees temàtiques de la UPC]Large Hadron Collider010308 nuclear & particles physicsbusiness.industryPhysicsNuclear dataRadioactive wasteNuclear technologyBeamlineCriticalitybusinessEPJ Web of Conferences
researchProduct

Search for relativistic magnetic monopoles with the ANTARES neutrino telescope

2012

Magnetic monopoles are predicted in various unified gauge models and could be produced at intermediate mass scales. Their detection in a neutrino telescope is facilitated by the large amount of light emitted compared to that from muons. This paper reports on a search for upgoing relativistic magnetic monopoles with the ANTARES neutrino telescope using a data set of 116 days of live time taken from December 2007 to December 2008. The one observed event is consistent with the expected atmospheric neutrino and muon background, leading to a 90% C.L. upper limit on the monopole flux between 1.3 ¿ 10¿17 and 8.9 ¿ 10¿17 cm¿2 s¿1 sr¿1 for monopoles with velocity ß ¿ 0.625.

FLUXMuon backgroundParticle physicsGauge modelMagnetic monopolesAstrophysics::High Energy Astrophysical PhenomenaMagnetic monopoleneutrino telescopes; antares; magnetic monopoleFOS: Physical sciencesCosmic ray01 natural sciencesNuclear physics0103 physical sciencesNeutronFIELD010306 general physicsDETECTORCherenkov radiationZenithHigh Energy Astrophysical Phenomena (astro-ph.HE)NeutronsPhysicsSPECTRUMAtmospheric neutrinosMagnetic monopoleANTARES:Física::Acústica [Àrees temàtiques de la UPC]MuonCharged particles010308 nuclear & particles physicsAstronomy and AstrophysicsMonopols magnèticsUpper limitsNeutrino detectorMass scaleFISICA APLICADA[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Física nuclearData setsNeutrino telescopes[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - High Energy Astrophysical PhenomenaEvent (particle physics)TelescopesAstroparticle Physics
researchProduct

Measurement of the heaviest Beta-delayed 2-neutron emitter: 136Sb

2017

The Beta-delayed neutron emission probability, Pn , of very exotic nuclei is crucial for the understanding of nuclear structure properties of many isotopes and astrophysical processes such as the rapid neutron capture process (r-process). In addition Beta-delayed neutrons are important in a nuclear power reactor operated in a prompt sub-critical, delayed critical condition, as they contribute to the decay heat inducing fission reactions after a shut down. The study of neutron-rich isotopes and the measurement of Beta-delayed one-neutron emitters (Beta1n) is possible thanks to the Rare Isotope Beam (RIB) facilities, where radioactive beams allow the production of exotic nuclei of interest, w…

FissionNeutron emissionQC1-999Astrophysics::High Energy Astrophysical PhenomenaNuclear TheoryNuclear physicsNeutronAstrophysics7. Clean energy01 natural sciencesNuclear physicsEmission0103 physical sciencesNeutronDecay heat010306 general physicsNuclear Experimentastro nuclear physicsPhysics:Energies::Energia nuclear [Àrees temàtiques de la UPC]NeutronsPnIsotopeta114:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsBranching fractionPhysicsNeutron capture13. Climate actionr-processPhysics::Accelerator PhysicsFísica nuclearAtomic physics
researchProduct

Analysis of the spatial distribution of free radicals in ammonium tartrate by pulse EPR techniques

2009

Using pulse electron paramagnetic resonance (EPR) on a series of l(+)-ammonium tartrate (AT) dosimeters exposed to radiations with different linear energy transfer (LET), we assessed the ability of pulse EPR spectroscopy to discriminate the quality of various radiation beams such as (60)Co gamma-ray photons, protons and thermal neutrons at various doses by analyzing the local radical distributions produced by the different beams. We performed two types of pulse EPR investigations: two-pulse electron spin echo decay obtained by varying the microwave power, and a double electron-electron resonance (DEER) study. Both methods provide information about the dipolar interactions among the free rad…

Free RadicalsBiophysicsAnalytical chemistryradical distribution; radiation dosimetry; ESR spectroscopyLinear energy transferElectronsRadiationTartrateRadiation Dosagelaw.inventionDiffusionchemistry.chemical_compoundlawAmmonium Tartrate by Pulse EPR TechniquesRadiology Nuclear Medicine and imagingCobalt RadioisotopesRadiometrySpectroscopyElectron paramagnetic resonanceTartratesNeutronsRadiationPulsed EPRElectron Spin Resonance SpectroscopyResonanceESR spectroscopyNeutron temperatureradiation dosimetrychemistryGamma Raysradical distributionProtons
researchProduct