Search results for "Nitric oxide"

showing 10 items of 1075 documents

Anti-inflammatory effect of grape (Vitis vinifera L.) seed extract through the downregulation of NF-κB and MAPK pathways in LPS-induced RAW264.7 macr…

2019

Abstract The aim of this study was to enhance the anti-inflammatory potential of grape (Vitis vinifera L.) seed extract (GSE) in lipopolysaccharide (LPS) activated murine macrophage RAW264.7 cells. The total phenol content of GSE was 112.66 mg GAE/g in Carignan, 142.33 mg GAE/g in Merlot and 161.66 mg GAE/g in Syrah. GSE contained 12 phenol compounds including 8 flavan-3-ols (catechin, epigallocatechin gallate, epicatechin, procyanidin b1, procyanidin b4, procyanidin b2), 3 flavonols (kaempferol, myricitrinand quercetin) and only 1 phenolic acid (gallic acid). GSE significantly suppressed the gene expression and protein secretion of tumor necrosis factor-α (TNF-α), interleukin (IL-6), induc…

0106 biological sciencesbiologyPlant ScienceEpigallocatechin gallate01 natural sciencesMolecular biology0104 chemical sciencesNitric oxideNitric oxide synthase010404 medicinal & biomolecular chemistrychemistry.chemical_compoundchemistrybiology.proteinGallic acidProcyanidin B4KaempferolProcyanidin B1Procyanidin B2010606 plant biology & botanySouth African Journal of Botany
researchProduct

There's More to the Picture Than Meets the Eye: Nitric Oxide Cross Talk with Ca2+ Signaling

2013

Abstract Calcium and nitric oxide (NO) are two important biological messengers. Increasing evidence indicates that Ca2+ and NO work together in mediating responses to pathogenic microorganisms and microbe-associated molecular patterns. Ca2+ fluxes were recognized to account for NO production, whereas evidence gathered from a number of studies highlights that NO is one of the key messengers mediating Ca2+ signaling. Here, we present a concise description of the current understanding of the molecular mechanisms underlying the cross talk between Ca2+ and NO in plant cells exposed to biotic stress. Particular attention will be given to the involvement of cyclic nucleotide-gated ion channels and…

0106 biological sciencescalmodulinCell signalingCalmodulinPhysiology[SDV.SA.AGRO]Life Sciences [q-bio]/Agricultural sciences/AgronomyNanotechnologyPlant ScienceBiology01 natural sciencesNitric oxideTranscriptome03 medical and health scienceschemistry.chemical_compound[ SDV.SA.AGRO ] Life Sciences [q-bio]/Agricultural sciences/Agronomyplant defenseGeneticsPlant defense against herbivoryIon channel030304 developmental biology0303 health sciencescell signallingBiotic stressCell biologychemistryprotein S-nitrosylationgene expressionbiology.proteinplant immunitySignal transduction010606 plant biology & botanyPlant Physiology
researchProduct

Nitric oxide production mediates oligogalacturonide-triggered immunity and resistance to Botrytis cinerea in Arabidopsis thaliana

2012

Nitric oxide (NO) regulates a wide range of plant processes from development to environmental adaptation. In this study, we investigated the production and/or function of NO in Arabidopsis thaliana leaf discs and plants elicited by oligogalacturonides (OGs) and challenged with Botrytis cinerea. We provided evidence that OGs triggered a fast and long lasting NO production which was Ca(2+) dependent and involved nitrate reductase (NR). Accordingly, OGs triggered an increase of both NR activity and transcript accumulation. NO production was also sensitive to the mammalian NO synthase inhibitor L-NAME. Intriguingly, we showed that L-NAME affected NO production by interfering with NR activity, t…

0106 biological scienceschemistry.chemical_classification0303 health sciencesReactive oxygen speciesbiologyPhysiologyfungiMutantfood and beveragesPlant physiologyPlant Sciencebiology.organism_classificationNitrate reductase01 natural sciencesNitric oxide03 medical and health scienceschemistry.chemical_compoundchemistryBiochemistrybiology.proteinArabidopsis thaliana030304 developmental biology010606 plant biology & botanyPeroxidaseBotrytis cinereaPlant, Cell & Environment
researchProduct

Nitric Oxide Signalling in Plants: Cross-Talk With Ca2+, Protein Kinases and Reactive Oxygen Species

2010

International audience; Nitric oxide (NO) is a gaseous free radical recognized as a ubiquitous signal transducer that contributes to various biological processes in animals. It exerts most of its effects by regulating the activities of various proteins including Ca2+ channels, protein kinases and transcription factors. In plants, studies conducted over the past ten years revealed that NO also functions as an endogenous mediator in diverse physiological processes ranging from root development to stomatal closure. Its biological role as an intracellular plant messenger molecule, however, remains poorly understood. Here, we review the molecular basis of NO signaling in animals and discuss curr…

0106 biological scienceschemistry.chemical_classification[ SDV.BV ] Life Sciences [q-bio]/Vegetal Biology0303 health sciencesProgrammed cell deathReactive oxygen speciesKinaseEndogenous mediator01 natural sciencesNitric oxideCell biology03 medical and health scienceschemistry.chemical_compoundchemistry[SDV.BV]Life Sciences [q-bio]/Vegetal BiologySignal transductionTranscription factorIntracellular030304 developmental biology010606 plant biology & botany
researchProduct

Nitric oxide and glutathione impact the expression of iron uptake- and iron transport-related genes as well as the content of metals in A. thaliana p…

2012

International audience; Mounting evidence indicate that nitric oxide (NO) acts as a signaling molecule mediating iron deficiency responses through the upregulation of the expression of iron uptake-related genes. Accordingly, NO donors such as nitrosoglutathione (GSNO) were reported to improve the fitness of plants grown under iron deficiency. Here, we showed that glutathione, a by-product of GSNO, triggered the upregulation of the expression of iron uptake- and transport-related gene and an increase of iron concentration in Arabidopsis thaliana seedlings facing iron deficiency. Furthermore, we provided evidence that under iron deficiency, NO released by GSNO did not improve the root iron co…

0106 biological sciencesmineral contentShort CommunicationIron[SDV]Life Sciences [q-bio]ArabidopsisPlant ScienceGenes PlantNitric Oxide01 natural sciencesPlant RootsNitric oxideS-Nitrosoglutathione03 medical and health scienceschemistry.chemical_compoundDownregulation and upregulationGene Expression Regulation PlantArabidopsismineral deficienciesmedicineArabidopsis thalianaglutathione030304 developmental biologymineral uptakeRegulation of gene expression0303 health sciencesManganesebiologyArabidopsis Proteinsarabidopsis thalianaBiological TransportIron deficiencyGlutathioneIron Deficienciesbiology.organism_classificationmedicine.diseaseZincchemistryBiochemistryS-Nitrosoglutathione[SDE]Environmental Sciencesgene expressionCopper010606 plant biology & botany
researchProduct

Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron upt…

2009

Abstract Nitric oxide (NO) functions as a cell-signaling molecule in plants. In particular, a role for NO in the regulation of iron homeostasis and in the plant response to toxic metals has been proposed. Here, we investigated the synthesis and the role of NO in plants exposed to cadmium (Cd2+), a nonessential and toxic metal. We demonstrate that Cd2+ induces NO synthesis in roots and leaves of Arabidopsis (Arabidopsis thaliana) seedlings. This production, which is sensitive to NO synthase inhibitors, does not involve nitrate reductase and AtNOA1 but requires IRT1, encoding a major plasma membrane transporter for iron but also Cd2+. By analyzing the incidence of NO scavenging or inhibition …

0106 biological sciencesroots[ SDV.BV ] Life Sciences [q-bio]/Vegetal BiologyPhysiologytoxic metalscadmiumNitrogen assimilationArabidopsischemistry.chemical_elementPlant ScienceNitrate reductase01 natural sciencesNitric oxide03 medical and health scienceschemistry.chemical_compoundArabidopsisGeneticsArabidopsis thaliana[SDV.BV]Life Sciences [q-bio]/Vegetal Biology030304 developmental biologyplasma membrane transporter2. Zero hunger0303 health sciencesCadmiumbiologyAtNOA1ACLNitric oxideMetabolismbiology.organism_classificationNitric oxide synthasechemistryBiochemistrybiology.proteiniron homeostasis010606 plant biology & botany
researchProduct

New Therapeutic Implications of Endothelial Nitric Oxide Synthase (eNOS) Function/Dysfunction in Cardiovascular Disease

2019

The Global Burden of Disease Study identified cardiovascular risk factors as leading causes of global deaths and life years lost. Endothelial dysfunction represents a pathomechanism that is associated with most of these risk factors and stressors, and represents an early (subclinical) marker/predictor of atherosclerosis. Oxidative stress is a trigger of endothelial dysfunction and it is a hall-mark of cardiovascular diseases and of the risk factors/stressors that are responsible for their initiation. Endothelial function is largely based on endothelial nitric oxide synthase (eNOS) function and activity. Likewise, oxidative stress can lead to the loss of eNOS activity or even “uncoupli…

0301 basic medicineAdipose tissueReview030204 cardiovascular system & hematologyPharmacologymedicine.disease_causeendothelial dysfunctionEpigenesis Geneticlcsh:Chemistry0302 clinical medicineEnoscardiovascular diseaseeNOS uncouplingoxidative stressEndothelial dysfunctionlcsh:QH301-705.5Spectroscopyenvironmental stressorsbiologyGeneral MedicineComputer Science Applicationsmedicine.anatomical_structureCardiovascular Diseasesmedicine.symptomOxidation-ReductionCell signalingEndotheliumNitric Oxide Synthase Type IIIInflammationModels BiologicalCatalysisInorganic Chemistry03 medical and health scienceslife style/behavioral health risk factorsmedicineAnimalsHumansPhysical and Theoretical ChemistryMolecular Biologybusiness.industryOrganic Chemistrymedicine.diseasebiology.organism_classification030104 developmental biologylcsh:Biology (General)lcsh:QD1-999Socioeconomic FactorsinflammationSoluble guanylyl cyclasebusinessOxidative stressInternational Journal of Molecular Sciences
researchProduct

ADMA and arginine derivatives in relation to non-invasive vascular function in the general population.

2015

Nitric oxide produced from l-arginine is central to vascular homeostasis. Little is known about the relationship between arginine derivatives including asymmetric dimethylarginine (ADMA) and non-invasive vascular function measures in the general population.In 5000 individuals (median age 56; 25th/75th percentile: 46, 65; 49% women) taking part in the population-based Gutenberg Health Study (Mainz area, Germany), we measured the relationship between the arginine derivatives asymmetric dimethylarginine (ADMA), N-monomethyl l-arginine (NMMA), symmetric dimethylarginine (SDMA) and l-arginine with flow-mediated dilation (FMD) and peripheral arterial tonometry (PAT). Weak bivariate correlations w…

0301 basic medicineAdultMalePercentilemedicine.medical_specialtyArginineBrachial ArteryPopulationVasodilation030204 cardiovascular system & hematologyArginine03 medical and health scienceschemistry.chemical_compound0302 clinical medicineInternal medicinemedicine.arteryGermanyPrevalenceMedicineHumansBrachial arteryEnzyme InhibitorseducationAgedRetrospective Studieseducation.field_of_studybiologybusiness.industryMiddle AgedNitric oxide synthaseVasodilation030104 developmental biologyEndocrinologyCross-Sectional StudieschemistryCardiovascular DiseasesPopulation Surveillancebiology.proteinFemaleNitric Oxide SynthaseCardiology and Cardiovascular MedicinebusinessAsymmetric dimethylarginineBody mass indexBlood Flow VelocityAtherosclerosis
researchProduct

Mechanisms of action of metformin in type 2 diabetes: Effects on mitochondria and leukocyte-endothelium interactions.

2020

Type 2 diabetes (T2D) is a very prevalent, multisystemic, chronic metabolic disorder closely related to atherosclerosis and cardiovascular diseases. It is characterised by mitochondrial dysfunction and the presence of oxidative stress. Metformin is one of the safest and most effective anti-hyperglycaemic agents currently employed as first-line oral therapy for T2D. It has demonstrated additional beneficial effects, unrelated to its hypoglycaemic action, on weight loss and several diseases, such as cancer, cardiovascular disorders and metabolic diseases, including thyroid diseases. Despite the vast clinical experience gained over several decades of use, the mechanism of action of metformin i…

0301 basic medicineAdvanced glycation end product (AGE)AMP-activated protein kinase (AMPK)endocrine system diseasesglycerol 3-phosphate dehydrogenase (GPD)Clinical Biochemistrytype 1 diabetes (T1D)Type 2 diabetesmTORC1Review Articleelectron transport chain (ETC)PharmacologyMitochondrionmedicine.disease_causeBiochemistry0302 clinical medicineLeukocytesCREB-binding protein (CBP)inner mitochondrial membrane (IMM)lcsh:QH301-705.5lcsh:R5-920cAMP response element-binding (CREB)glucagon-like peptide 1 (GLP-1)type 2 diabetes (T2D)Type 2 diabetesMetforminMetforminMitochondriamedicine.anatomical_structurereactive nitrogen species (RNS)reactive oxygen species (ROS)sirtuin (SIRT)medicine.symptomlcsh:Medicine (General)cardiovascular diseases (CVD)medicine.drugEndotheliumnitric oxide synthase (NOS)polycystic ovary syndrome (PCOS)Pathophysiologyinsulin resistance (IR)superoxide dismutase (SOD)03 medical and health sciencesglycated haemoglobin (HbA1c)medicineorganic cation transporter (OCT)HumansEndotheliumintercellular adhesion molecule-1 (ICAM-1)business.industryoxidative phosphorylation (OXPHOS)Organic Chemistryperoxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α)AMPKmedicine.diseaseAtherosclerosisvascular cell adhesion molecule-1 (VCAM-1)Treatment030104 developmental biologylcsh:Biology (General)Mechanism of actionDiabetes Mellitus Type 2Oxidative stressbusinessinsulin receptor substrate (IRS)030217 neurology & neurosurgeryOxidative stress
researchProduct

Targeting Nitric Oxide with Natural Derived Compounds as a Therapeutic Strategy in Vascular Diseases

2016

Within the family of endogenous gasotransmitters, nitric oxide (NO) is the smallest gaseous intercellular messenger involved in the modulation of several processes, such as blood flow and platelet aggregation control, essential to maintain vascular homeostasis. NO is produced by nitric oxide synthases (NOS) and its effects are mediated by cGMP-dependent or cGMP-independent mechanisms. Growing evidence suggests a crosstalk between the NO signaling and the occurrence of oxidative stress in the onset and progression of vascular diseases, such as hypertension, heart failure, ischemia, and stroke. For these reasons, NO is considered as an emerging molecular target for developing therapeutic stra…

0301 basic medicineAgingPhytochemicalsIschemiaEndogenyReview Article030204 cardiovascular system & hematologyPharmacologyBiologyNitric Oxidemedicine.disease_causeCardiovascular SystemBiochemistryNitric oxide03 medical and health scienceschemistry.chemical_compound0302 clinical medicinemedicineAnimalsHumansVascular Diseasescell biology; aging; biochemistrylcsh:QH573-671GasotransmittersPlants Medicinallcsh:CytologyPolyphenolsCardiovascular AgentsCell BiologyGeneral Medicinemedicine.diseaseDietOxidative StressCrosstalk (biology)030104 developmental biologychemistryHeart failurePlant PreparationsOxidative stressIntracellularPhytotherapySignal TransductionOxidative Medicine and Cellular Longevity
researchProduct