Search results for "Nobelium"

showing 10 items of 23 documents

Precision Measurement of the First Ionization Potential of Nobelium

2018

One of the most important atomic properties governing an element's chemical behavior is the energy required to remove its least-bound electron, referred to as the first ionization potential. For the heaviest elements, this fundamental quantity is strongly influenced by relativistic effects which lead to unique chemical properties. Laser spectroscopy on an atom-at-a-time scale was developed and applied to probe the optical spectrum of neutral nobelium near the ionization threshold. The first ionization potential of nobelium is determined here with a very high precision from the convergence of measured Rydberg series to be 6.626 21±0.000 05  eV. This work provides a stringent benchmark for st…

ENERGIESGeneral Physics and Astronomychemistry.chemical_elementElectron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energysymbols.namesakeIonizationEQUAL-TO 1040103 physical sciencesLAWRENCIUMBUFFER GASPhysics::Atomic PhysicsSUPERHEAVY ELEMENTSLASER SPECTROSCOPY010306 general physicsSpectroscopyPhysicsNEUTRAL YTTERBIUM010308 nuclear & particles physicsHEAVIEST ELEMENTSchemistryRydberg formulasymbolsEXCITED-LEVELSNobeliumACTINIDESIonization energyAtomic physicsRelativistic quantum chemistryLawrencium
researchProduct

First Ionization Potentials of Fm, Md, No, and Lr

2018

We report the first ionization potentials (IP1) of the heavy actinides, fermium (Fm, atomic number Z = 100), mendelevium (Md, Z = 101), nobelium (No, Z = 102), and lawrencium (Lr, Z = 103), determined using a method based on a surface ionization process coupled to an online mass separation technique in an atom-at-a-time regime. The measured IP1 values agree well with those predicted by state-of-the-art relativistic calculations performed alongside the present measurements. Similar to the well-established behavior for the lanthanides, the IP1 values of the heavy actinides up to No increase with filling up the 5f orbital, while that of Lr is the lowest among the actinides. These results clear…

ENERGIESThermal ionizationchemistry.chemical_element01 natural sciencesBiochemistryCatalysisColloid and Surface ChemistrySURFACE-IONIZATIONPhysics in GeneralCHEMISTRYIonization0103 physical sciencesELEMENTS010306 general physicsSPECTROSCOPY010304 chemical physicsChemistryFermiumGeneral ChemistryActinideATOMMendeleviumNobeliumAtomic numberAtomic physicsLawrenciumJournal of the American Chemical Society
researchProduct

Stability and synthesis of superheavy elements: Fighting the battle against fission – example of $^{254}$No

2016

International audience; Superheavy nuclei exist solely due to quantum shell effects,which create a pocket in the potential-energy surface of the nucleus, thusproviding a barrier against spontaneous fission. Determining the height ofthe fission barrier and its angular-momentum dependence is important toquantify the role that microscopic shell corrections play in enhancing andextending the limits of nuclear stability. In this talk, the first measurement ofa fission barrier in the very heavy nucleus 254No will be presented.

FissionQC1-999Nuclear TheoryShell (structure)nuclear stabilitySuperheavy Elements[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesStability (probability)Nuclear physics0103 physical sciencesmedicinePhysics::Atomic and Molecular Clusters010306 general physicsNuclear ExperimentQuantumSpontaneous fissionPhysicsnobeliumta114010308 nuclear & particles physicsPhysicsfission barriersuperheavy elementsmedicine.anatomical_structureAtomic physicsNucleus
researchProduct

Probing Sizes and Shapes of Nobelium Isotopes by Laser Spectroscopy

2018

Until recently, ground-state nuclear moments of the heaviest nuclei could only be inferred from nuclear spectroscopy, where model assumptions are required. Laser spectroscopy in combination with modern atomic structure calculations is now able to probe these moments directly, in a comprehensive and nuclear-model-independent way. Here we report on unique access to the differential mean-square charge radii of ^{252,253,254}No, and therefore to changes in nuclear size and shape. State-of-the-art nuclear density functional calculations describe well the changes in nuclear charge radii in the region of the heavy actinides, indicating an appreciable central depression in the deformed proton densi…

IN-BEAMNuclear TheoryGeneral Physics and Astronomychemistry.chemical_element[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]DROPLET-MODEL01 natural sciencesEffective nuclear chargeNO-2540103 physical sciencesNeutronSUPERHEAVY ELEMENTS010306 general physicsSpectroscopyMASSESNuclear ExperimentHyperfine structurePhysicsMagnetic momentNUCLEI010308 nuclear & particles physicsPRODUCTSchemistryQuadrupoleUPDATENobeliumAtomic physicsSHIPNuclear density
researchProduct

Nuclear isomers in superheavy elements as stepping stones towards the island of stability

2006

The stability of an atomic nucleus is determined by the outcome of a tug-of-war between the attractive strong nuclear force and the repulsive electrostatic force between the protons in the nucleus. If 100 protons and about 150 neutrons or more are assembled into a nucleus, the repulsion usually becomes dominant and causes the nucleus to fission. For certain 'magic numbers' of protons and neutrons this repulsion can be overcome and the nucleus stabilized. In particular an 'island of stability' is predicted beyond the actinides, where long-lived or even stable superheavy elements can exist, but its precise limits are unknown. Experiments can help determine where this island lies, however. Spe…

Multidisciplinary010308 nuclear & particles physicsChemistryFermiumNuclear TheoryStrong interactionchemistry.chemical_element01 natural sciences7. Clean energyIsland of stabilityNuclear physics0103 physical sciencesAtomic nucleusNuclear fusionNeutronNobeliumAtomic numberAtomic physicsNuclear Experiment010306 general physicsNature
researchProduct

A gas-jet apparatus for high-resolution laser spectroscopy on the heaviest elements at SHIP

2020

© 2019 Elsevier B.V. Laser spectroscopy enables the determination of fundamental atomic and nuclear properties with high precision. In view of the low production rates of the heaviest elements, a high total efficiency is a crucial requirement for any experimental setup to be used in on-line experiments. The setup requires the use of gas stopping techniques to slow down the radionuclides of interest. In previous studies laser spectroscopy was performed inside a gas-filled stopping cell with a limited spectral resolution of a few GHz. Collisional broadening inside stopping cells ultimately limits the precision of laser spectroscopic studies and hampers in particular hyperfine spectroscopy. Th…

Nuclear and High Energy PhysicsJet (fluid)Materials science010308 nuclear & particles physicsbusiness.industryResolution (electron density)chemistry.chemical_elementLaser7. Clean energy01 natural scienceslaw.inventionLaser linewidthOpticschemistrylaw0103 physical sciencesNobeliumSpectral resolution010306 general physicsSpectroscopybusinessInstrumentationHyperfine structure
researchProduct

Recent developments for high-precision mass measurements of the heaviest elements at SHIPTRAP

2013

Abstract Atomic nuclei far from stability continue to challenge our understanding. For example, theoretical models have predicted an “island of stability” in the region of the superheavy elements due to the closure of spherical proton and neutron shells. Depending on the model, these are expected at Z = 114, 120 or even 126 and N = 172 or 184. Valuable information on the road to the island of stability is derived from high-precision mass measurements, which give direct access to binding energies of short-lived trans-uranium nuclei. Recently, direct mass measurements at SHIPTRAP have been extended to nobelium and lawrencium isotopes around the deformed shell gap N = 152. In order to further …

Nuclear and High Energy PhysicsProtonIsotopeChemistryNuclear TheoryBinding energychemistry.chemical_elementIsland of stabilityNuclear physicsAtomic nucleusNeutronNobeliumInstrumentationLawrenciumNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Properties of nuclei in the nobelium region studied within the covariant, Skyrme, and Gogny energy density functionals

2015

We calculate properties of the ground and excited states of nuclei in the nobelium region for proton and neutron numbers of 92 <= Z <= 104 and 144 <= N <= 156, respectively. We use three different energy-density-functional (EDF) approaches, based on covariant, Skyrme, and Gogny functionals, each within two different parameter sets. A comparative analysis of the results obtained for odd-even mass staggerings, quasiparticle spectra, and moments of inertia allows us to identify single-particle and shell effects that are characteristic to these different models and to illustrate possible systematic uncertainties related to using the EDF modelling

Nuclear and High Energy Physics[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]ProtonNuclear TheoryNuclear Theorychemistry.chemical_elementFOS: Physical sciences7. Clean energySpectral lineMoments of inertiaNuclear physicsNuclear Theory (nucl-th)NeutronCovariant transformationHeavy and superheavy nucleiPhysicsta114Odd–even mass staggeringMoment of inertiachemistryExcited stateQuasiparticleNobeliumQuasiparticle excitationsNuclear energy density functionalsNuclear masses
researchProduct

Extending Penning trap mass measurements with SHIPTRAP to the heaviest elements

2013

Penning-trap mass spectrometry of radionuclides provides accurate mass values and absolute binding energies. Such mass measurements are sensitive indicators of the nuclear structure evolution far away from stability. Recently, direct mass measurements have been extended to the heavy elements nobelium (Z=102) and lawrencium (Z=103) with the Penning-trap mass spectrometer SHIPTRAP. The results probe nuclear shell effects at N=152. New developments will pave the way to access even heavier nuclides.

Nuclear physicschemistryBinding energychemistry.chemical_elementNuclear binding energyTransactinide elementNuclideNobeliumAtomic physicsMass spectrometryPenning trapLawrenciumAIP Conference Proceedings
researchProduct

Nobelium energy levels and hyperfine structure constants

2018

Advances in laser spectroscopy of superheavy ($Z>100$) elements enabled determination of the nuclear moments of the heaviest nuclei, which requires high-precision atomic calculations of the relevant hyperfine structure (HFS) constants. Here, we calculated the HFS constants and energy levels for a number of nobelium (Z=102) states using the hybrid approach, combining linearized coupled-cluster and configuration interaction methods. We also carried out an extensive study of the No energies using 16-electron configuration interaction method to determine the position of the (5f^{13}7s^2 6d) and (5f^{13}7s^2 7p) levels with a hole in the 5f shell to evaluate their potential effect on the hype…

PhysicsAtomic Physics (physics.atom-ph)Potential effectchemistry.chemical_elementFOS: Physical sciencesConfiguration interactionHybrid approach01 natural sciencesPhysics - Atomic Physics010305 fluids & plasmaschemistry0103 physical sciencesNobeliumAtomic physics010306 general physicsSpectroscopyHyperfine structureEnergy (signal processing)
researchProduct