Search results for "Non-thermal"
showing 10 items of 33 documents
AE Aurigae: First detection of non-thermal X-ray emission from a bow shock produced by a runaway star
2012
Runaway stars produce shocks when passing through interstellar medium at supersonic velocities. Bow shocks have been detected in the mid-infrared for several high-mass runaway stars and in radio waves for one star. Theoretical models predict the production of high-energy photons by non-thermal radiative processes in a number sufficiently large to be detected in X-rays. To date, no stellar bow shock has been detected at such energies. We present the first detection of X-ray emission from a bow shock produced by a runaway star. The star is AE Aur, which was likely expelled from its birthplace due to the encounter of two massive binary systems and now is passing through the dense nebula IC 405…
Observational constraints on the modelling of SN 1006
2011
Long-term monitoring of mrk 501 for its very high energy γ emission and a flare in 2011 october
2012
"As one of the brightest active blazars in both X-ray and very high energy γ -ray bands, Mrk 501, is very useful for" "physics associated with jets from active galactic nuclei. The ARGO-YBJ experiment has monitored Mrk 501 for γ - rays above 0.3 TeV since 2007 November. The largest flare since 2005 was observed from 2011 October and lasted until about 2012 April. In this paper, a detailed analysis of this event is reported. During the brightest γ -ray flaring episodes from 2011 October 17 to November 22, an excess of the event rate over 6σ is detected by ARGO-YBJ in the direction of Mrk 501, corresponding to an increase of the γ -ray flux above 1 TeV by a factor of 6.6 ± 2.2 from its steady…
3D simulations of wind-jet interaction in massive X-ray binaries
2010
High-mass microquasars may produce jets that will strongly interact with surrounding stellar winds on binary system spatial scales. We study the dynamics of the collision between a mildly relativistic hydrodynamical jet of supersonic nature and the wind of an OB star. We performed numerical 3D simulations of jets that cross the stellar wind with the code Ratpenat. The jet head generates a strong shock in the wind, and strong recollimation shocks occur due to the initial overpressure of the jet with its environment. These shocks can accelerate particles up to TeV energies and produce gamma-rays. The recollimation shock also strengthens jet asymmetric Kelvin-Helmholtz instabilities produced i…
Prompt TeV Emission from Cosmic Rays Accelerated by Gamma Ray Bursts Interacting with Surrounding Stellar Wind
2009
11 pages, 1 figure.--ISI article identifier:000263148600009.-- ArXiv pre-print avaible at:http://arxiv.org/abs/0810.1287
Internal shocks in relativistic outflows: collisions of magnetized shells
2007
(Abridged): We study the collision of magnetized irregularities (shells) in relativistic outflows in order to explain the origin of the generic phenomenology observed in the non-thermal emission of both blazars and gamma-ray bursts. We focus on the influence of the magnetic field on the collision dynamics, and we further investigate how the properties of the observed radiation depend on the strength of the initial magnetic field and on the initial internal energy density of the flow. The collisions of magnetized shells and the radiation resulting from these collisions are calculated using the 1D relativistic magnetohydrodynamics code MRGENESIS. The interaction of the shells with the externa…
Anomalous transport effects on switching currents of graphene-based Josephson junctions
2017
We explore the effect of noise on the ballistic graphene-based small Josephson junctions in the framework of the resistively and capacitively shunted model. We use the non-sinusoidal current-phase relation specific for graphene layers partially covered by superconducting electrodes. The noise induced escapes from the metastable states, when the external bias current is ramped, give the switching current distribution, i.e. the probability distribution of the passages to finite voltage from the superconducting state as a function of the bias current, that is the information more promptly available in the experiments. We consider a noise source that is a mixture of two different types of proce…
The NHXM observatory
2011
Exploration of the X-ray sky has established X-ray astronomy as a fundamental astrophysical discipline. While our knowledge of the sky below 10 keV has increased dramatically (∼8 orders of magnitude) by use of grazing incidence optics, we still await a similar improvement above 10 keV, where to date only collimated instruments have been used. Also ripe for exploration is the field of X-ray polarimetry, an unused fundamental tool to understand the physics and morphology of X-ray sources. Here we present a novel mission, the New Hard X-ray Mission (NHXM) that brings together for the first time simultaneous high-sensitivity, hard-X-ray imaging, broadband spectroscopy and polarimetry. NHXM will…
Innovative Non-Thermal Technologies for Recovery and Valorization of Value-Added Products from Crustacean Processing By-Products—An Opportunity for a…
2021
The crustacean processing industry has experienced significant growth over recent decades resulting in the production of a great number of by-products. Crustacean by-products contain several valuable components such as proteins, lipids, and carotenoids, especially astaxanthin and chitin. When isolated, these valuable compounds are characterized by bioactivities such as anti-microbial, antioxidant, and anti-cancer ones, and that could be used as nutraceutical ingredients or additives in the food, pharmaceutical, and cosmetic industries. Different innovative non-thermal technologies have appeared as promising, safe, and efficient tools to recover these valuable compounds. This review aims at …
Recent advances in the application of pulsed light processing for improving food safety and increasing shelf life
2019
Abstract Background New technologies of non-thermal disinfection such as pulsed light (PL) have emerged lately as an alternative to traditional (thermal and chemical) disinfection and preservation methods. PL can be used to decontaminate a great variety of foods as well as to decontaminate contact surfaces, thus improving safety in foods and extending their shelf life. Moreover, this technology can prevent or reduce some of the detrimental effects of traditional methods on nutrients and bioactive compounds of food products. Scope and approach The combination of PL with other techniques such as ultraviolet light (UV), thermosonication (TS), pulsed electric fields (PEF), manothermosonication …