Search results for "Nondestructive Testing"
showing 9 items of 69 documents
Model-assisted ultrasonic calibration using intentionally embedded defects for in-process weld inspection
2021
Abstract Automated in-process Non-Destructive Testing (NDT) systems are rapidly gaining traction within the manufacturing industry as they reduce manufacturing time and costs. When considering calibration and verification of such systems, creating defects of known geometry and nature during the deposition of a weld can: (I) help examine the capability of the automated system to detect and characterise defects, (II) be used to form a database of signals associated with different defect types to train intelligent defect classification algorithms, and (III) act as a basis for in-process gain calibration during weld inspection at high temperatures, where the ultrasound beam can be skewed as a r…
Simulation of laser generated ultrasound with application to defect detection
2008
Laser generated ultrasound holds substantial promise for use as a tool for defect detection in remote inspection thanks to its ability to produce frequencies in the MHz range, enabling fine spatial resolution of defects. Despite the potential impact of laser generated ultrasound in many areas of science and industry, robust tools for studying the phenomenon are lacking and thus limit the design and optimization of non-destructive testing and evaluation techniques. The laser generated ultrasound propagation in complex structures is an intricate phenomenon and is extremely hard to analyze. Only simple geometries can be studied analytically. Numerical techniques found in the literature have pr…
Flying Laser Spot Thermography technique for the NDE of Fibre Metal Laminates disbonds
2017
Abstract The present work investigates the features of an active Infrared-NDT Thermography technique derived from a Flying Laser Spot set-up for the analysis of interlaminar disbonds in layered structures in general and Fibre Metal Laminates in particular. The presented technique uses a laser-spot heat source, which moves at a constant speed, raster scanning the object surface. Interlaminar defects parallel to the surfaces act as barriers towards through-the-thickness heat diffusion. This produces some modifications over the surface thermal field which are well identified in the Standard Deviation calculated over a Reference Area following the heat source. The mechanisms leading to such def…
Simulation of laser-generated ultrasonic wave propagation in solid media and air with application to NDE
2009
Ultrasonic methods are well known as powerful and reliable tool for defect detection. In the previous decades focus and interest have been directed to non-contact sensors and methods, showing many advantages over contact techniques where inspection depends on contact conditions (pressure, coupling medium, contact area). The non-contact hybrid ultrasonic method described here is of interest for many applications, requiring periodic inspection in service or after manufacturing. Despite the potential impact of laser-generated ultrasound in many areas of industry, robust tools for studying the phenomenon are lacking and thus limit the design and optimization of non-destructive testing and evalu…
Adapting robot paths for automated NDT of complex structures using ultrasonic alignment
2019
Automated inspection systems using industrial robots have been available for several years. The IntACom robot inspection system was developed at TWI Wales and utilizes phased array ultrasonic probes to inspect complex geometries, in particular aerospace composite components. To increase inspection speed and accuracy, off-line path planning is employed to define a series of robotic movements following the surface of a component. To minimize influences of refraction at the component interface and effects of anisotropy, the ultrasonic probe must be kept perpendicular to the surface throughout the inspection. Deviations between the actual component and computer model used for path-planning resu…
Toward the Development of Load Transfer Efficiency Evaluation of Rigid Pavements by a Rolling Wheel Deflectometer
2020
The jointed rigid pavement is currently evaluated by the Falling weight deflectometer which is rather slow for the testing of the jointed pavements. Continuous nondestructive evaluation of rigid pavements with a rolling wheel deflectometer can be used to measure the load transfer and is investigated. Load transfer is an important indicator of the rigid pavement&rsquo
Inspection of architectural structures with integrated electrical methodologies and infrared thermography
2005
B030 INSPECTION OF ARCHITECTURAL STRUCTURES WITH INTEGRATED ELECTRICAL METHODOLOGIES AND INFRARED THERMOGRAPHY Abstract 1 The attention of this paper was focused on the detection of moisture and local inhomogeneities inside architectural structures with electrical methodologies and infrared thermography. To this end a suitable specimen was fabricated using a mixture of sand water and concrete and with slag inclusions. To monitor the moisture variation with time in concrete nondestructive evaluation with both the techniques was made three months after the specimen fabrication and repeated again six months later. Introduction The inspection of architectural structures generally includes vario…
Phase-delayed laser diode array allows ultrasonic guided wave mode selection and tuning
2013
Selecting and tuning modes are useful in ultrasonic guided wave non-destructive testing (NDT) since certain modes at various center frequencies are sensitive to specific types of defects. Ideally one should be able to select both the mode and the center frequency of the launched waves. We demonstrated that an affordable laser diode array can selectively launch either the S0 or A0 ultrasonic wave mode at a chosen center frequency into a polymer plate. A fiber-coupled diode array (4 elements) illuminated a 2 mm thick acrylic plate. A predetermined time delay matching the selected mode and frequency was employed between the output of the elements. The generated ultrasound was detected by a 215…
On the use of the EMI for the health monitoring of bonded elements
2014
The low weight, robustness and fatigue resistance of adhesive joints make them suitable for structural joints. A fully developed nondestructive evaluation technique however is needed to monitor and assess the quality of bonded joints. In the present paper the application of the electromechanical impedance (EMI) technique is proposed. In the EMI method a piezoelectric transducer (PZT) is attached to the structure of interest. The high sensitivity and low power consumption make the EMI method feasible for real time structural health monitoring. In this study we investigated the sensitivity of the electromechanical response of a PZT to the curing and the quality of the adhesive used for bonded…