Search results for "Nonlinear regularity"

showing 10 items of 30 documents

Singular (p, q)-equations with superlinear reaction and concave boundary condition

2020

We consider a parametric nonlinear elliptic problem driven by the sum of a p-Laplacian and of a q-Laplacian (a (Formula presented.) -equation) with a singular and (Formula presented.) -superlinear reaction and a Robin boundary condition with (Formula presented.) -sublinear boundary term (Formula presented.). So, the problem has the combined effects of singular, concave and convex terms. We look for positive solutions and prove a bifurcation-type theorem describing the changes in the set of positive solutions as the parameter varies.

singular termConcave and convex nonlinearitiesnonlinear maximum principleApplied Mathematics010102 general mathematicsMathematical analysisSingular termBoundary (topology)Mathematics::Spectral Theory01 natural sciences010101 applied mathematicscomparison principlesNonlinear systemSettore MAT/05 - Analisi Matematicanonlinear regularity theoryBoundary value problem0101 mathematicstruncation (pq)-LaplacianAnalysisParametric statisticsMathematicsApplicable Analysis
researchProduct

A multiplicity theorem for parametric superlinear (p,q)-equations

2020

We consider a parametric nonlinear Robin problem driven by the sum of a \(p\)-Laplacian and of a \(q\)-Laplacian (\((p,q)\)-equation). The reaction term is \((p-1)\)-superlinear but need not satisfy the Ambrosetti-Rabinowitz condition. Using variational tools, together with truncation and comparison techniques and critical groups, we show that for all small values of the parameter, the problem has at least five nontrivial smooth solutions, all with sign information.

Pure mathematicsnonlinear maximum principlelcsh:T57-57.97General MathematicsMathematics::Analysis of PDEssuperlinear reactionMultiplicity (mathematics)extremal solutionsSettore MAT/05 - Analisi Matematicalcsh:Applied mathematics. Quantitative methodsConstant sign and nodal solutionExtremal solutionnonlinear regularityconstant sign and nodal solutionscritical groupsCritical groupMathematicsParametric statisticsOpuscula Mathematica
researchProduct

Positive solutions for the Neumann p-Laplacian

2017

We examine parametric nonlinear Neumann problems driven by the p-Laplacian with asymptotically ( $$p-1$$ )-linear reaction term f(z, x) (as $$x\rightarrow +\infty $$ ). We determine the existence, nonexistence and minimality of positive solutions as the parameter $$\lambda >0$$ varies.

Pure mathematicsPositive solutions Nonlinear regularity Nonlinear maximum principle Nonlinear Picone’s identityGeneral Mathematics010102 general mathematicsMathematical analysisLambda01 natural sciencesTerm (time)010101 applied mathematicsNonlinear systemSettore MAT/05 - Analisi Matematicap-Laplacian0101 mathematicsParametric statisticsMathematics
researchProduct

Constant sign and nodal solutions for nonlinear robin equations with locally defined source term

2020

We consider a parametric Robin problem driven by a nonlinear, nonhomogeneous differential operator which includes as special cases the p-Laplacian and the (p,q)-Laplacian. The source term is parametric and only locally defined (that is, in a neighborhood of zero). Using suitable cut-off techniques together with variational tools and comparison principles, we show that for all big values of the parameter, the problem has at least three nontrivial smooth solutions, all with sign information (positive, negative and nodal).

010102 general mathematicsMathematical analysisMathematics::Spectral Theory01 natural sciencesLocally defined reactionTerm (time)Critical groups010101 applied mathematicsNonlinear systemConstant sign and nodal solutionsSettore MAT/05 - Analisi MatematicaModeling and SimulationQA1-9390101 mathematicsNonlinear maximum principleConstant (mathematics)NODALMathematicsAnalysisSign (mathematics)MathematicsNonlinear regularity
researchProduct

Perturbed eigenvalue problems for the Robin p-Laplacian plus an indefinite potential

2020

AbstractWe consider a parametric nonlinear Robin problem driven by the negativep-Laplacian plus an indefinite potential. The equation can be thought as a perturbation of the usual eigenvalue problem. We consider the case where the perturbation$$f(z,\cdot )$$f(z,·)is$$(p-1)$$(p-1)-sublinear and then the case where it is$$(p-1)$$(p-1)-superlinear but without satisfying the Ambrosetti–Rabinowitz condition. We establish existence and uniqueness or multiplicity of positive solutions for certain admissible range for the parameter$$\lambda \in {\mathbb {R}}$$λ∈Rwhich we specify exactly in terms of principal eigenvalue of the differential operator.

Pure mathematicsSublinear functionPerturbation (astronomy)Sublinear and superlinear perturbationLambda01 natural sciencesNonlinear Picone’s identitySettore MAT/05 - Analisi MatematicaUniqueness0101 mathematicsMathematical PhysicsEigenvalues and eigenvectorsPositive solutionsMathematicsNonlinear regularityAlgebra and Number TheoryMinimal positive solution010102 general mathematicsDifferential operator010101 applied mathematicsNonlinear systemp-LaplacianIndefinite potentialUniquenessNonlinear maximum principleAnalysis
researchProduct

Parameter dependence for the positive solutions of nonlinear, nonhomogeneous Robin problems

2020

We consider a parametric nonlinear Robin problem driven by a nonlinear nonhomogeneous differential operator plus an indefinite potential. The reaction term is $$(p-1)$$-superlinear but need not satisfy the usual Ambrosetti–Rabinowitz condition. We look for positive solutions and prove a bifurcation-type result for the set of positive solutions as the parameter $$\lambda >0$$ varies. Also we prove the existence of a minimal positive solution $$u_\lambda ^*$$ and determine the monotonicity and continuity properties of the map $$\lambda \rightarrow u_\lambda ^*$$.

Pure mathematicsAlgebra and Number TheoryApplied MathematicsMathematics::Analysis of PDEsMonotonic functionNonlinearDifferential operatorLambdaBifurcation-type resultTerm (time)Positive solutionSet (abstract data type)Computational MathematicsNonlinear systemSettore MAT/05 - Analisi MatematicaIndefinite potentialNonhomogeneous differential operatorGeometry and TopologySuperlinear reaction termAnalysisNonlinear regularity theoryParametric statisticsMathematicsRevista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas
researchProduct

(p, 2)-Equations with a Crossing Nonlinearity and Concave Terms

2018

We consider a parametric Dirichlet problem driven by the sum of a p-Laplacian ($$p>2$$) and a Laplacian (a (p, 2)-equation). The reaction consists of an asymmetric $$(p-1)$$-linear term which is resonant as $$x \rightarrow - \infty $$, plus a concave term. However, in this case the concave term enters with a negative sign. Using variational tools together with suitable truncation techniques and Morse theory (critical groups), we show that when the parameter is small the problem has at least three nontrivial smooth solutions.

Dirichlet problem0209 industrial biotechnologyControl and OptimizationMultiple smooth solutionTruncationConcave termApplied Mathematicsp-Laplacian010102 general mathematicsMathematical analysis02 engineering and technology01 natural sciencesTerm (time)Nonlinear system020901 industrial engineering & automationSettore MAT/05 - Analisi MatematicaCrossing nonlinearityNonlinear maximum principle0101 mathematicsLaplace operatorCritical groupNonlinear regularityMorse theoryParametric statisticsMathematicsApplied Mathematics & Optimization
researchProduct

On Noncoercive (p, q)-Equations

2021

We consider a nonlinear Dirichlet problem driven by a (p, q)-Laplace differential operator (1 < q < p). The reaction is (p - 1)-linear near +/-infinity and the problem is noncoercive. Using variational tools and truncation and comparison techniques together with critical groups, we produce five nontrivial smooth solutions all with sign information and ordered. In the particular case when q = 2, we produce a second nodal solution for a total of six nontrivial smooth solutions all with sign information.

Dirichlet problemTruncationGeneral MathematicsMathematical analysisGeneral Physics and AstronomyDifferential operator(pq)-LaplacianNonlinear systemextremal solutionsprincipal eigenvalueSettore MAT/05 - Analisi Matematicanonlinear regularityconstant sign and nodal solutionsSign (mathematics)Mathematics
researchProduct

Existence of positive solutions for nonlinear Dirichlet problems with gradient dependence and arbitrary growth

2018

We consider a nonlinear elliptic problem driven by the Dirichlet $p$-Laplacian and a reaction term which depends also on the gradient (convection). No growth condition is imposed on the reaction term $f(z, \cdot,y)$. Using topological tools and the asymptotic analysis of a family of perturbed problems, we prove the existence of a positive smooth solution.

pseudomonotone mapApplied Mathematicsnonlinear maximum principle010102 general mathematicsconvection reaction term01 natural sciencesDirichlet distribution010101 applied mathematicshartman conditionNonlinear systemsymbols.namesakeSettore MAT/05 - Analisi Matematicapicone identitysymbolsQA1-939Applied mathematicsnonlinear regularity0101 mathematicsMathematicsMathematicsElectronic Journal of Qualitative Theory of Differential Equations
researchProduct

Positive solutions for nonlinear Robin problems with convection

2019

We consider a nonlinear Robin problem driven by the p-Laplacian and with a convection term f(z,x,y). Without imposing any global growth condition on f(z,·,·) and using topological methods (the Leray-Schauder alternative principle), we show the existence of a positive smooth solution.

ConvectionGeneral Mathematicsnonlinear maximum principlep-LaplacianGeneral Engineering(minimal) positive solutionNonlinear systemEngineering (all)p-LaplacianApplied mathematicsnonlinear regularityMathematics (all)convection termLeray-Schauder alternative principleMathematics
researchProduct