Search results for "Nonlinear regularity"
showing 10 items of 30 documents
Singular (p, q)-equations with superlinear reaction and concave boundary condition
2020
We consider a parametric nonlinear elliptic problem driven by the sum of a p-Laplacian and of a q-Laplacian (a (Formula presented.) -equation) with a singular and (Formula presented.) -superlinear reaction and a Robin boundary condition with (Formula presented.) -sublinear boundary term (Formula presented.). So, the problem has the combined effects of singular, concave and convex terms. We look for positive solutions and prove a bifurcation-type theorem describing the changes in the set of positive solutions as the parameter varies.
A multiplicity theorem for parametric superlinear (p,q)-equations
2020
We consider a parametric nonlinear Robin problem driven by the sum of a \(p\)-Laplacian and of a \(q\)-Laplacian (\((p,q)\)-equation). The reaction term is \((p-1)\)-superlinear but need not satisfy the Ambrosetti-Rabinowitz condition. Using variational tools, together with truncation and comparison techniques and critical groups, we show that for all small values of the parameter, the problem has at least five nontrivial smooth solutions, all with sign information.
Positive solutions for the Neumann p-Laplacian
2017
We examine parametric nonlinear Neumann problems driven by the p-Laplacian with asymptotically ( $$p-1$$ )-linear reaction term f(z, x) (as $$x\rightarrow +\infty $$ ). We determine the existence, nonexistence and minimality of positive solutions as the parameter $$\lambda >0$$ varies.
Constant sign and nodal solutions for nonlinear robin equations with locally defined source term
2020
We consider a parametric Robin problem driven by a nonlinear, nonhomogeneous differential operator which includes as special cases the p-Laplacian and the (p,q)-Laplacian. The source term is parametric and only locally defined (that is, in a neighborhood of zero). Using suitable cut-off techniques together with variational tools and comparison principles, we show that for all big values of the parameter, the problem has at least three nontrivial smooth solutions, all with sign information (positive, negative and nodal).
Perturbed eigenvalue problems for the Robin p-Laplacian plus an indefinite potential
2020
AbstractWe consider a parametric nonlinear Robin problem driven by the negativep-Laplacian plus an indefinite potential. The equation can be thought as a perturbation of the usual eigenvalue problem. We consider the case where the perturbation$$f(z,\cdot )$$f(z,·)is$$(p-1)$$(p-1)-sublinear and then the case where it is$$(p-1)$$(p-1)-superlinear but without satisfying the Ambrosetti–Rabinowitz condition. We establish existence and uniqueness or multiplicity of positive solutions for certain admissible range for the parameter$$\lambda \in {\mathbb {R}}$$λ∈Rwhich we specify exactly in terms of principal eigenvalue of the differential operator.
Parameter dependence for the positive solutions of nonlinear, nonhomogeneous Robin problems
2020
We consider a parametric nonlinear Robin problem driven by a nonlinear nonhomogeneous differential operator plus an indefinite potential. The reaction term is $$(p-1)$$-superlinear but need not satisfy the usual Ambrosetti–Rabinowitz condition. We look for positive solutions and prove a bifurcation-type result for the set of positive solutions as the parameter $$\lambda >0$$ varies. Also we prove the existence of a minimal positive solution $$u_\lambda ^*$$ and determine the monotonicity and continuity properties of the map $$\lambda \rightarrow u_\lambda ^*$$.
(p, 2)-Equations with a Crossing Nonlinearity and Concave Terms
2018
We consider a parametric Dirichlet problem driven by the sum of a p-Laplacian ($$p>2$$) and a Laplacian (a (p, 2)-equation). The reaction consists of an asymmetric $$(p-1)$$-linear term which is resonant as $$x \rightarrow - \infty $$, plus a concave term. However, in this case the concave term enters with a negative sign. Using variational tools together with suitable truncation techniques and Morse theory (critical groups), we show that when the parameter is small the problem has at least three nontrivial smooth solutions.
On Noncoercive (p, q)-Equations
2021
We consider a nonlinear Dirichlet problem driven by a (p, q)-Laplace differential operator (1 < q < p). The reaction is (p - 1)-linear near +/-infinity and the problem is noncoercive. Using variational tools and truncation and comparison techniques together with critical groups, we produce five nontrivial smooth solutions all with sign information and ordered. In the particular case when q = 2, we produce a second nodal solution for a total of six nontrivial smooth solutions all with sign information.
Existence of positive solutions for nonlinear Dirichlet problems with gradient dependence and arbitrary growth
2018
We consider a nonlinear elliptic problem driven by the Dirichlet $p$-Laplacian and a reaction term which depends also on the gradient (convection). No growth condition is imposed on the reaction term $f(z, \cdot,y)$. Using topological tools and the asymptotic analysis of a family of perturbed problems, we prove the existence of a positive smooth solution.
Positive solutions for nonlinear Robin problems with convection
2019
We consider a nonlinear Robin problem driven by the p-Laplacian and with a convection term f(z,x,y). Without imposing any global growth condition on f(z,·,·) and using topological methods (the Leray-Schauder alternative principle), we show the existence of a positive smooth solution.