Search results for "Nonlocal"

showing 10 items of 95 documents

Adiabatic creation of entangled states by a bichromatic field designed from the topology of the dressed eigenenergies

2002

Preparation of entangled pairs of coupled two-state systems driven by a bichromatic external field is studied. We use a system of two coupled spin-1/2 that can be translated into a three-state ladder model whose intermediate state represents the entangled state. We show that this entangled state can be prepared in a robust way with appropriate fields. Their frequencies and envelopes are derived from the topological properties of the model.

PhysicsQuantum networkQuantum PhysicsFOS: Physical sciencesOne-way quantum computerTopologyAtomic and Molecular Physics and OpticsQuantization (physics)Quantum nonlocalityClassical mechanicsQuantum mechanicsW stateQuantum informationQuantum Physics (quant-ph)Quantum teleportationNo-communication theorem
researchProduct

A Monge-Kantorovich mass transport problem for a discrete distance

2011

This paper is concerned with a Monge-Kantorovich mass transport problem in which in the transport cost we replace the Euclidean distance with a discrete distance. We fix the length of a step and the distance that measures the cost of the transport depends of the number of steps that is needed to transport the involved mass from its origin to its destination. For this problem we construct special Kantorovich potentials, and optimal transport plans via a nonlocal version of the PDE formulation given by Evans and Gangbo for the classical case with the Euclidean distance. We also study how these problems, when rescaling the step distance, approximate the classical problem. In particular we obta…

Mass transportMass transportMonge-Kantorovich problemsNonlocal problems010102 general mathematicsMathematical analysisConstruct (python library)01 natural sciences010101 applied mathematicsEuclidean distance0101 mathematicsAnalysisMathematicsMonge–Kantorovich problems
researchProduct

Quantitative Approximation Properties for the Fractional Heat Equation

2017

In this note we analyse \emph{quantitative} approximation properties of a certain class of \emph{nonlocal} equations: Viewing the fractional heat equation as a model problem, which involves both \emph{local} and \emph{nonlocal} pseudodifferential operators, we study quantitative approximation properties of solutions to it. First, relying on Runge type arguments, we give an alternative proof of certain \emph{qualitative} approximation results from \cite{DSV16}. Using propagation of smallness arguments, we then provide bounds on the \emph{cost} of approximate controllability and thus quantify the approximation properties of solutions to the fractional heat equation. Finally, we discuss genera…

osittaisdifferentiaaliyhtälöt0209 industrial biotechnologyClass (set theory)Control and Optimizationfractional parabolic Calderón problemPseudodifferential operatorsApplied Mathematics010102 general mathematics02 engineering and technologyType (model theory)nonlocal operators [cost of approximation]01 natural sciencesinversio-ongelmatControllabilityMathematics - Analysis of PDEsweak unique continuation [Runge approximation]020901 industrial engineering & automationFOS: MathematicsApplied mathematicsHeat equationapproksimointi0101 mathematicsMathematicsAnalysis of PDEs (math.AP)
researchProduct

An energy residual-based approach to gradient effects within the mechanics of generalized continua

2012

AbstractGeneralized continua exhibiting gradient effects are addressed through a method grounded on the energy residual (ER)-based gradient theory by the first author and coworkers. A main tool of this theory is the Clausius-Duhem inequality cast in a form differing from the classical one only by a nonstandard extra term, the (nonlocality) ER, required to satisfy the insulation condition (its global value has to vanish or to take a known value). The ER carries in the nonlocality features of the mechanical problem through a strain-like rate field, being the specific nonlocality source, and a concomitant higher-order long-range stress (or microstress) field. The thermodynamic restrictions on …

PhysicsGradient plasticitycosserat continuaMaterials Science (miscellaneous)Mechanicsgeneralized continuaResidualgradient plasticityMechanics of MaterialsTJ1-1570nonlocal continuum thermodynamicsMechanical engineering and machinerygradient elasticityEnergy (signal processing)Journal of the Mechanical Behavior of Materials
researchProduct

Ultra-nonlocality in density functional theory for photo-emission spectroscopy.

2014

We derive an exact expression for the photo-current of photo-emission spectroscopy using time-dependent current density functional theory (TDCDFT). This expression is given as an integral over the Kohn-Sham spectral function renormalized by effective potentials that depend on the exchange-correlation kernel of current density functional theory. We analyze in detail the physical content of this expression by making a connection between the density-functional expression and the diagrammatic expansion of the photo-current within many-body perturbation theory. We further demonstrate that the density functional expression does not provide us with information on the kinetic energy distribution of…

Electromagnetic fieldPhysicsCondensed Matter - Materials Scienceta114Condensed Matter - Mesoscale and Nanoscale Physicsphotocurrentsphotoelectron spectroscopyGeneral Physics and AstronomyMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesKinetic energySettore FIS/03 - Fisica della MateriaQuantum nonlocalitykineticsQuantum electrodynamicsKernel (statistics)Mesoscale and Nanoscale Physics (cond-mat.mes-hall)Density functional theoryEmission spectrumPhysical and Theoretical ChemistryPerturbation theorySpectroscopyThe Journal of chemical physics
researchProduct

Multiplicity of positive solutions for a degenerate nonlocal problem with p-Laplacian

2021

Abstract We consider a nonlinear boundary value problem with degenerate nonlocal term depending on the L q -norm of the solution and the p-Laplace operator. We prove the multiplicity of positive solutions for the problem, where the number of solutions doubles the number of “positive bumps” of the degenerate term. The solutions are also ordered according to their L q -norms.

PhysicsQA299.6-433sign-changing coefficientmultiple fixed pointsNonlocal problemsp-LaplacianDegenerate energy levels35j2035j25Settore MAT/05 - Analisi Matematica35q74p-LaplacianMultiplicity (chemistry)AnalysisMathematical physicsAdvances in Nonlinear Analysis
researchProduct

Preserving entanglement and nonlocality in solid-state qubits by dynamical decoupling

2014

In this paper we study how to preserve entanglement and nonlocality under dephasing produced by classical noise with large low-frequency components, as $1/f$ noise, by Dynamical Decoupling techniques. We first show that quantifiers of entanglement and nonlocality satisfy a closed relation valid for two independent qubits locally coupled to a generic environment under pure dephasing and starting from a general class of initial states. This result allows to assess the efficiency of pulse-based dynamical decoupling for protecting nonlocal quantum correlations between two qubits subject to pure-dephasing local random telegraph and $1/f$-noise. We investigate the efficiency of an "entanglement m…

Dynamical decouplingDephasingsuperconducting qubitFOS: Physical sciencesQuantum entanglementEntanglement; superconducting qubits; open quantum systems; quantum controlSquashed entanglementSUPERCONDUCTING CIRCUITSNoise (electronics)Settore FIS/03 - Fisica Della MateriaEntanglementQuantum nonlocalityQuantum mechanicsQuantumPhysicsQuantum Physicsopen quantum systemBELL INEQUALITYQuantum PhysicsCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsQUANTUM-SYSTEMSQubitQuantum Physics (quant-ph)quantum controlSUPERCONDUCTING CIRCUITS; BELL INEQUALITY; QUANTUM-SYSTEMS
researchProduct

Nonlocal Elastic-Damage Models

2014

A theory of nonlocal isotropic damage for elastic quasi-brittle materials is presented under the assumption of isothermal conditions and small deformations. Key ingredients of this theory are a self-adjoint (regularization) operator which transforms a local field into a related nonlocal one while preserves uniform fields and a free energy which depends on the strain and (linearly) on the nonlocal damage variable, as well as on an (scalar) internal variable accounting for the damage hardening. The relevant thermodynamic restrictions on the constitutive equations are obtained by means of two alternative procedures, one based on the principle of virtual power and the other on the concept of “n…

Principle of Virtual PowerPhysicsMechanicsSettore ICAR/08 - Scienza Delle CostruzioniNonlocal damage
researchProduct

Steady‐state solutions of the aerotaxis problem

2022

We study the steady-state system of aerotaxis equations in higher dimensions.It is shown that the existence and multiplicity of solutions depend on the totalmass of the colony of bacteria, the energy function, and the boundary conditions.

aerotaxis equationsGeneral MathematicsGeneral Engineeringstationary solutionsnonlocal elliptic problemsMathematical Methods in the Applied Sciences
researchProduct

A method to transform a nonlocal model into a gradient one within elasticity and plasticity

2014

Abstract A method based on the principle of the virtual power (PVP) is presented, by which a mechanical problem of nonlocal elasticity, or plasticity, is transformed into one of gradient nature. Different Taylor series expansion techniques are applied to the driving local strain fields of the nonlocal problem, either full spatial expansion within the bulk volume, or uni-directional expansion along the normal to the thin boundary layer. This, at the limit when the boundary layer thickness tends to zero, makes the PVP of the nonlocal model transform itself into one featuring a counterpart gradient model. Also, for a class of “associated” nonlocal and gradient elasticity models (i.e. the kerne…

Spatial expansionNonlocal and gradient elasticity Nonlocal and gradient plasticity Higher order boundary conditionsMechanical EngineeringMathematical analysisGeneral Physics and AstronomyPlasticityBoundary layer thicknessMechanical ProblemBoundary layersymbols.namesakeMechanics of MaterialsVirtual powerTaylor seriessymbolsGeneral Materials ScienceElasticity (economics)Settore ICAR/08 - Scienza Delle CostruzioniMathematics
researchProduct