Search results for "Nonlocal"
showing 10 items of 95 documents
Adiabatic creation of entangled states by a bichromatic field designed from the topology of the dressed eigenenergies
2002
Preparation of entangled pairs of coupled two-state systems driven by a bichromatic external field is studied. We use a system of two coupled spin-1/2 that can be translated into a three-state ladder model whose intermediate state represents the entangled state. We show that this entangled state can be prepared in a robust way with appropriate fields. Their frequencies and envelopes are derived from the topological properties of the model.
A Monge-Kantorovich mass transport problem for a discrete distance
2011
This paper is concerned with a Monge-Kantorovich mass transport problem in which in the transport cost we replace the Euclidean distance with a discrete distance. We fix the length of a step and the distance that measures the cost of the transport depends of the number of steps that is needed to transport the involved mass from its origin to its destination. For this problem we construct special Kantorovich potentials, and optimal transport plans via a nonlocal version of the PDE formulation given by Evans and Gangbo for the classical case with the Euclidean distance. We also study how these problems, when rescaling the step distance, approximate the classical problem. In particular we obta…
Quantitative Approximation Properties for the Fractional Heat Equation
2017
In this note we analyse \emph{quantitative} approximation properties of a certain class of \emph{nonlocal} equations: Viewing the fractional heat equation as a model problem, which involves both \emph{local} and \emph{nonlocal} pseudodifferential operators, we study quantitative approximation properties of solutions to it. First, relying on Runge type arguments, we give an alternative proof of certain \emph{qualitative} approximation results from \cite{DSV16}. Using propagation of smallness arguments, we then provide bounds on the \emph{cost} of approximate controllability and thus quantify the approximation properties of solutions to the fractional heat equation. Finally, we discuss genera…
An energy residual-based approach to gradient effects within the mechanics of generalized continua
2012
AbstractGeneralized continua exhibiting gradient effects are addressed through a method grounded on the energy residual (ER)-based gradient theory by the first author and coworkers. A main tool of this theory is the Clausius-Duhem inequality cast in a form differing from the classical one only by a nonstandard extra term, the (nonlocality) ER, required to satisfy the insulation condition (its global value has to vanish or to take a known value). The ER carries in the nonlocality features of the mechanical problem through a strain-like rate field, being the specific nonlocality source, and a concomitant higher-order long-range stress (or microstress) field. The thermodynamic restrictions on …
Ultra-nonlocality in density functional theory for photo-emission spectroscopy.
2014
We derive an exact expression for the photo-current of photo-emission spectroscopy using time-dependent current density functional theory (TDCDFT). This expression is given as an integral over the Kohn-Sham spectral function renormalized by effective potentials that depend on the exchange-correlation kernel of current density functional theory. We analyze in detail the physical content of this expression by making a connection between the density-functional expression and the diagrammatic expansion of the photo-current within many-body perturbation theory. We further demonstrate that the density functional expression does not provide us with information on the kinetic energy distribution of…
Multiplicity of positive solutions for a degenerate nonlocal problem with p-Laplacian
2021
Abstract We consider a nonlinear boundary value problem with degenerate nonlocal term depending on the L q -norm of the solution and the p-Laplace operator. We prove the multiplicity of positive solutions for the problem, where the number of solutions doubles the number of “positive bumps” of the degenerate term. The solutions are also ordered according to their L q -norms.
Preserving entanglement and nonlocality in solid-state qubits by dynamical decoupling
2014
In this paper we study how to preserve entanglement and nonlocality under dephasing produced by classical noise with large low-frequency components, as $1/f$ noise, by Dynamical Decoupling techniques. We first show that quantifiers of entanglement and nonlocality satisfy a closed relation valid for two independent qubits locally coupled to a generic environment under pure dephasing and starting from a general class of initial states. This result allows to assess the efficiency of pulse-based dynamical decoupling for protecting nonlocal quantum correlations between two qubits subject to pure-dephasing local random telegraph and $1/f$-noise. We investigate the efficiency of an "entanglement m…
Nonlocal Elastic-Damage Models
2014
A theory of nonlocal isotropic damage for elastic quasi-brittle materials is presented under the assumption of isothermal conditions and small deformations. Key ingredients of this theory are a self-adjoint (regularization) operator which transforms a local field into a related nonlocal one while preserves uniform fields and a free energy which depends on the strain and (linearly) on the nonlocal damage variable, as well as on an (scalar) internal variable accounting for the damage hardening. The relevant thermodynamic restrictions on the constitutive equations are obtained by means of two alternative procedures, one based on the principle of virtual power and the other on the concept of “n…
Steady‐state solutions of the aerotaxis problem
2022
We study the steady-state system of aerotaxis equations in higher dimensions.It is shown that the existence and multiplicity of solutions depend on the totalmass of the colony of bacteria, the energy function, and the boundary conditions.
A method to transform a nonlocal model into a gradient one within elasticity and plasticity
2014
Abstract A method based on the principle of the virtual power (PVP) is presented, by which a mechanical problem of nonlocal elasticity, or plasticity, is transformed into one of gradient nature. Different Taylor series expansion techniques are applied to the driving local strain fields of the nonlocal problem, either full spatial expansion within the bulk volume, or uni-directional expansion along the normal to the thin boundary layer. This, at the limit when the boundary layer thickness tends to zero, makes the PVP of the nonlocal model transform itself into one featuring a counterpart gradient model. Also, for a class of “associated” nonlocal and gradient elasticity models (i.e. the kerne…