Search results for "Normal Distribution"

showing 10 items of 135 documents

Non-Gaussian Distribution for Var Calculation: an Assessment for the Italian Market

2001

Abstract In this paper we compare different approaches to computing VaR (Value-at-Risk) for heavy tailed return series. Using data from the Italian market, we show that almost all the return series present statistically significant skewness and kurtosis. We implement (i) the stable models proposed by Rachev et al . (2000), (ii) an alternative to the Gaussian distributions based on a Generalized Error Distribution and (iii) a non-parametric model proposed by Li (1999). All the models are then submitted to backtest on out-of-sample data in order to assess their forecasting power. We observe that when the percentiles are low, all the models tested produce results that are dominant compared to …

EngineeringPercentileSeries (mathematics)business.industryGaussianRiskMetricssymbols.namesakeDistribution (mathematics)StatisticsEconometricsKurtosissymbolsbusinessValue at riskGeneralized normal distributionIFAC Proceedings Volumes
researchProduct

Comparison of the Rain Flow Algorithm and the Spectral Method for Fatigue Life Determination Under Uniaxial and Multiaxial Random Loading

2008

This paper presents the strain energy density parameter used for fatigue life calculation under random loading by two methods. The first method is based on schematization of energy parameter histories with the rain flow algorithm. The other one is based on moments of the power spectral density function of the energy parameter. The experimental data of fatigue tests of 10HNAP steel under constant amplitude and random uniaxial loading with non-gaussion probability distribution, zero mean value, and wide-band frequency spectrum used for comparison of the rain flow algorithm and the spectral method gave satisfactory results. Next, histories of the random stress tensor with normal probability di…

Environmental EngineeringMaterials scienceCauchy stress tensorPublic Health Environmental and Occupational HealthGeneral EngineeringBiaxial tensile testSpectral densityStrain energy density functionNormal distributionNuclear Energy and EngineeringProbability distributionGeneral Materials ScienceSpectral methodAlgorithmVibration fatigueJournal of ASTM International
researchProduct

Color image quality assessment measure using multivariate generalized Gaussian distribution

2014

This paper deals with color image quality assessment in the reduced-reference framework based on natural scenes statistics. In this context, we propose to model the statistics of the steer able pyramid coefficients by a Multivariate Generalized Gaussian distribution (MGGD). This model allows taking into account the high correlation between the components of the RGB color space. For each selected scale and orientation, we extract a parameter matrix from the three color components sub bands. In order to quantify the visual degradation, we use a closed-form of Kullback-Leibler Divergence (KLD) between two MGGDs. Using "TID 2008" benchmark, the proposed measure has been compared with the most i…

FOS: Computer and information sciencesColor histogramColor imagebusiness.industryComputer Vision and Pattern Recognition (cs.CV)Computer Science - Computer Vision and Pattern RecognitionPattern recognitionColor spaceRGB color spacesymbols.namesakesymbolsPyramid (image processing)Artificial intelligencebusinessDivergence (statistics)Gaussian processGeneralized normal distributionMathematics
researchProduct

Unsupervised Anomaly and Change Detection With Multivariate Gaussianization

2022

Anomaly detection (AD) is a field of intense research in remote sensing (RS) image processing. Identifying low probability events in RS images is a challenging problem given the high dimensionality of the data, especially when no (or little) information about the anomaly is available a priori. While a plenty of methods are available, the vast majority of them do not scale well to large datasets and require the choice of some (very often critical) hyperparameters. Therefore, unsupervised and computationally efficient detection methods become strictly necessary, especially now with the data deluge problem. In this article, we propose an unsupervised method for detecting anomalies and changes …

FOS: Computer and information sciencesComputer Science - Machine LearningMultivariate statisticsComputer sciencebusiness.industryComputer Vision and Pattern Recognition (cs.CV)Computer Science - Computer Vision and Pattern RecognitionFOS: Physical sciencesImage processingPattern recognitionMultivariate normal distributionComputational Physics (physics.comp-ph)Machine Learning (cs.LG)Methodology (stat.ME)Transformation (function)Robustness (computer science)General Earth and Planetary SciencesAnomaly detectionArtificial intelligenceElectrical and Electronic EngineeringbusinessPhysics - Computational PhysicsStatistics - MethodologyChange detectionCurse of dimensionalityIEEE Transactions on Geoscience and Remote Sensing
researchProduct

Kernel methods and their derivatives: Concept and perspectives for the earth system sciences.

2020

Kernel methods are powerful machine learning techniques which implement generic non-linear functions to solve complex tasks in a simple way. They Have a solid mathematical background and exhibit excellent performance in practice. However, kernel machines are still considered black-box models as the feature mapping is not directly accessible and difficult to interpret.The aim of this work is to show that it is indeed possible to interpret the functions learned by various kernel methods is intuitive despite their complexity. Specifically, we show that derivatives of these functions have a simple mathematical formulation, are easy to compute, and can be applied to many different problems. We n…

FOS: Computer and information sciencesComputer Science - Machine LearningSupport Vector MachineTheoretical computer scienceComputer scienceEntropyKernel FunctionsNormal Distribution0211 other engineering and technologies02 engineering and technologyMachine Learning (cs.LG)Machine LearningStatistics - Machine LearningSimple (abstract algebra)0202 electrical engineering electronic engineering information engineeringOperator TheoryData ManagementMultidisciplinaryGeographyApplied MathematicsSimulation and ModelingQRDensity estimationKernel methodKernel (statistics)Physical SciencessymbolsMedicine020201 artificial intelligence & image processingAlgorithmsResearch ArticleComputer and Information SciencesScienceMachine Learning (stat.ML)Research and Analysis MethodsKernel MethodsKernel (linear algebra)symbols.namesakeArtificial IntelligenceSupport Vector MachinesHumansEntropy (information theory)Computer SimulationGaussian process021101 geological & geomatics engineeringData VisualizationCorrectionRandom VariablesFunction (mathematics)Probability TheorySupport vector machineAlgebraPhysical GeographyLinear AlgebraEarth SciencesEigenvectorsRandom variableMathematicsEarth SystemsPLoS ONE
researchProduct

Randomized Rx For Target Detection

2018

This work tackles the target detection problem through the well-known global RX method. The RX method models the clutter as a multivariate Gaussian distribution, and has been extended to nonlinear distributions using kernel methods. While the kernel RX can cope with complex clutters, it requires a considerable amount of computational resources as the number of clutter pixels gets larger. Here we propose random Fourier features to approximate the Gaussian kernel in kernel RX and consequently our development keep the accuracy of the nonlinearity while reducing the computational cost which is now controlled by an hyperparameter. Results over both synthetic and real-world image target detection…

FOS: Computer and information sciencesHyperparameter020301 aerospace & aeronauticsComputer Science - Machine LearningComputer scienceComputer Vision and Pattern Recognition (cs.CV)0211 other engineering and technologiesComputer Science - Computer Vision and Pattern RecognitionMultivariate normal distribution02 engineering and technologyObject detectionMachine Learning (cs.LG)symbols.namesakeKernel (linear algebra)Kernel method0203 mechanical engineeringKernel (statistics)Gaussian functionsymbolsClutterAnomaly detectionAlgorithm021101 geological & geomatics engineering
researchProduct

Using SMAA-2 method with dependent uncertainties for strategic forest planning

2006

Abstract Uncertainty included in forest variables is normally ignored in forest management planning. When the uncertainty is accounted for, it is typically assumed to be independently distributed for the criteria measurements of different alternatives. In forest management planning, the factors introducing the uncertainty can be classified into three main sources: the errors in the basic forestry data, the uncertainty of the (relative) future prices of timber, and the uncertainty in predicting the forest development. Due to the nature of these error sources, most of the involved uncertainties can be assumed to be positively correlated across the alternative management plans and/or criteria.…

Forest planningEconomics and EconometricsDecision support system021103 operations researchSociology and Political ScienceComputer scienceDependency informationbusiness.industry020209 energyEnvironmental resource management0211 other engineering and technologiesForestryMultivariate normal distribution02 engineering and technology15. Life on landManagement Monitoring Policy and LawForest development0202 electrical engineering electronic engineering information engineeringEconometricsSensitivity analysisbusinessForest management planningUncertainty analysisForest Policy and Economics
researchProduct

Estimation of biogas produced by the landfill of Palermo, applying a Gaussian model

2008

Abstract In this work, a procedure is suggested to assess the rate of biogas emitted by the Bellolampo landfill (Palermo, Italy), starting from the data acquired by two of the stations for monitoring meteorological parameters and polluting gases. The data used refer to the period November 2005–July 2006. The methane concentration, measured in the CEP suburb of Palermo, has been analysed together with the meteorological data collected by the station situated inside the landfill area. In the present study, the methane has been chosen as a tracer of the atmospheric pollutants produced by the dump. The data used for assessing the biogas emission refer to night time periods characterized by weak…

Greenhouse EffectPoint sourceNormal DistributionWindMethaneAtmosphereMultiple pointchemistry.chemical_compoundBiogaswaste; waste management;TRACERwasteWaste Management and DisposalAir PollutantsSettore ING-IND/11 - Fisica Tecnica AmbientaleWaste managementEnvironmental engineeringModels TheoreticalRefuse DisposalchemistryItalyAtmospheric pollutantsEnvironmental sciencewaste managementGasesSingle point source
researchProduct

SIMULATION EXPERIMENTS WITH MULTIPLE GROUP LINEAR AND QUADRATIC DISCRIMINANT ANALYSIS

1973

Summary A simulation program is described which can be performed to obtain estimates of the different types of misclassification probabilities for multiple group linear and quadratic discriminant analysis. The program can be used to study how these errors depend on sample sizes and the different parameters of the multivariate normal distribution. Examples for several simulation experiments are given and possible conclusions are discussed.

Group (mathematics)Sample size determinationOptimal discriminant analysisStatisticsMultivariate normal distributionQuadratic classifierComputer Science::DatabasesMathematics
researchProduct

Modelling the presence of disease under spatial misalignment using Bayesian latent Gaussian models.

2015

Modelling patterns of the spatial incidence of diseases using local environmental factors has been a growing problem in the last few years. Geostatistical models have become popular lately because they allow estimating and predicting the underlying disease risk and relating it with possible risk factors. Our approach to these models is based on the fact that the presence/absence of a disease can be expressed with a hierarchical Bayesian spatial model that incorporates the information provided by the geographical and environmental characteristics of the region of interest. Nevertheless, our main interest here is to tackle the misalignment problem arising when information about possible covar…

Health (social science)Computer scienceEpidemiologyGaussian030231 tropical medicineGeography Planning and DevelopmentBayesian probabilityNormal Distributionlcsh:G1-922Medicine (miscellaneous)Bayesian inference01 natural sciencesNormal distribution010104 statistics & probability03 medical and health sciencessymbols.namesakeBayes' theorem0302 clinical medicineCovariateStatisticsINLAHierarchical Bayesian modellingEconometricsHumansGeostatistics0101 mathematicsSpatial AnalysisStochastic ProcessesModels StatisticalHealth PolicyBayes TheoremFasciola hepaticaLaplace's methodsymbolsGaussian network modelBayesian Kriginglcsh:Geography (General)Geospatial health
researchProduct