Search results for "Normal mode"
showing 10 items of 75 documents
Location- and observation time-dependent quantum-tunneling
2009
We investigate quantum tunneling in a translation invariant chain of particles. The particles interact harmonically with their nearest neighbors, except for one bond, which is anharmonic. It is described by a symmetric double well potential. In the first step, we show how the anharmonic coordinate can be separated from the normal modes. This yields a Lagrangian which has been used to study quantum dissipation. Elimination of the normal modes leads to a nonlocal action of Caldeira-Leggett type. If the anharmonic bond defect is in the bulk, one arrives at Ohmic damping, i.e. there is a transition of a delocalized bond state to a localized one if the elastic constant exceeds a critical value $…
Néel Spin-Orbit Torque Driven Antiferromagnetic Resonance in Mn2Au Probed by Time-Domain THz Spectroscopy
2018
We observe the excitation of collective modes in the terahertz (THz) range driven by the recently discovered Neel spin-orbit torques (NSOTs) in the metallic antiferromagnet Mn_{2}Au. Temperature-dependent THz spectroscopy reveals a strong absorption mode centered near 1 THz, which upon heating from 4 to 450 K softens and loses intensity. A comparison with the estimated eigenmode frequencies implies that the observed mode is an in-plane antiferromagnetic resonance (AFMR). The AFMR absorption strength exceeds those found in antiferromagnetic insulators, driven by the magnetic field of the THz radiation, by 3 orders of magnitude. Based on this and the agreement with our theory modeling, we inf…
A Non-normal-Mode Marginal State of Convection in a Porous Rectangle
2019
Author's accepted manuscript (postprint). This is a post-peer-review, pre-copyedit version of an article published in Transport in Porous Media. The final authenticated version is available online at: http://dx.doi.org/10.1007/s11242-019-01263-5. The fourth-order Darcy–Bénard eigenvalue problem for onset of thermal convection in a 2D rectangular porous box is investigated. The conventional type of solution has normal-mode dependency in at least one of the two spatial directions. The present eigenfunctions are of non-normal-mode type in both the horizontal and the vertical direction. A numerical solution is found by the finite element method, since no analytical method is known for this non-…
Coherent control of stimulated emission inside one-dimensional photonic crystals
2004
In this paper, the quasinormal mode (QNM) theory is applied to discuss the quantum problem of an atom embedded inside a one-dimensional (1D) photonic band gap (PBG) cavity pumped by two counterpropagating laser beams. The e.m. field is quantized in terms of the QNMs in the 1D PBG and the atom modeled as a two-level system is assumed to be weakly coupled to just one of the QNMs. The main result of the paper is that the decay time depends on the position of the dipole inside the cavity, and can be controlled by the phase difference of the two laser beams.
Sum Frequency Generation Spectra from Velocity-Velocity Correlation Functions: New Developments and Applications
2018
At the interface, the properties of water can be rather different from those observed in the bulk. In this chapter we present an overview of our computational approach to understand water structure and dynamics at the interface including atomistic and electronic structure details. In particular we show how Density Functional Theory-based molecular dynamics simulations (DFT-MD) of water interfaces can provide a microscopic interpretation of recent experimental results from surface sensitive vibrational Sum Frequency Generation spectroscopy (SFG). In our recent work we developed an expression for the calculation of the SFG spectra of water interfaces which is based on the projection of the at…
Full configuration interaction calculation of Be3.
2004
The full configuration interaction (FCI) study of the ground state of the neutral beryllium trimer has been performed using an atomic natural orbitals [3s2p1d] basis set. Both triangular and linear structures have been considered for the Be(3) cluster. The optimal geometry for the equilateral triangle has been calculated. The potential energy cut sections along the normal a(1)(') mode and one of the components of the e(') mode have then been studied. The FCI symmetric atomization potential of the linear cluster is also reported. It shows a secondary van der Waals minimum at a long bond distance. All singular points in the potential energy curves are characterized. Other properties, like dis…
Coherent magneto-elastic oscillations in superfluid magnetars
2016
We study the effect of superfluidity on torsional oscillations of highly magnetised neutron stars (magnetars) with a microphysical equation of state by means of two-dimensional, magnetohydrodynamical- elastic simulations. The superfluid properties of the neutrons in the neutron star core are treated in a parametric way in which we effectively decouple part of the core matter from the oscillations. Our simulations confirm the existence of two groups of oscillations, namely continuum oscillations that are confined to the neutron star core and are of Alfv\'enic character, and global oscillations with constant phase and that are of mixed magneto-elastic type. The latter might explain the quasi-…
Mass spectrum and thermodynamics of quasi-conformal gauge theories from gauge/gravity duality
2011
We use gauge/gravity duality to study simultaneously the mass spectrum and the thermodynamics of a generic quasi-conformal gauge theory, specified by its beta function. The beta function of a quasi-conformal theory almost vanishes, and the coupling is almost constant between two widely separated energy scales. Depending on whether the gravity dual has a black hole or not, the mass spectrum is either a spectrum of quasinormal oscillations or a normal T=0 mass spectrum. The mass spectrum is quantitatively correlated with the thermal properties of the system. As the theory approaches conformality, the masses have to vanish. We show that in this limit, the masses calculated via gauge/gravity du…
Empirical parameterization of the K±→π±π0π0 decay Dalitz plot
2010
As first observed by the NA48/2 experiment at the CERN SPS, the π0π0 invariant mass (M00) distribution from K±→π±π0π0 decay shows a cusp-like anomaly at M00=2m+, where m+ is the charged pion mass. An analysis to extract the ππ scattering lengths in the isospin I=0 and I=2 states, a0 and a2, respectively, has been recently reported. In the present work the Dalitz plot of this decay is fitted to a new empirical parameterization suitable for practical purposes, such as Monte Carlo simulations of K±→π±π0π0 decays.
Mapping acoustical activity in 3D chiral mechanical metamaterials onto micropolar continuum elasticity
2020
Abstract We compare the phonon band structures and chiral phonon eigenmodes of a recently experimentally realized three-dimensional (3D) cubic chiral metamaterial architecture to results from linear micropolar elasticity, an established generalization of classical linear Cauchy elasticity. We achieve very good qualitative agreement concerning the anisotropies of the eigenfrequencies, the anisotropies of the eigenmode properties of the acoustic branches, as well as with respect to the observed pronounced sample-size dependence of acoustical activity and of the static push-to-twist conversion effects. The size dependence of certain properties, that is, the loss of scale invariance, is a finge…