Search results for "Normalization"
showing 10 items of 632 documents
Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation
2002
The exact renormalization group equation for pure quantum gravity is used to derive the non-perturbative $\Fbeta$-functions for the dimensionless Newton constant and cosmological constant on the theory space spanned by the Einstein-Hilbert truncation. The resulting coupled differential equations are evaluated for a sharp cutoff function. The features of these flow equations are compared to those found when using a smooth cutoff. The system of equations with sharp cutoff is then solved numerically, deriving the complete renormalization group flow of the Einstein-Hilbert truncation in $d=4$. The resulting renormalization group trajectories are classified and their physical relevance is discus…
A class of nonlocal truncations in quantum Einstein gravity and its renormalization group behavior
2002
Motivated by the conjecture that the cosmological constant problem could be solved by strong quantum effects in the infrared we use the exact flow equation of Quantum Einstein Gravity to determine the renormalization group behavior of a class of nonlocal effective actions. They consist of the Einstein-Hilbert term and a general nonlinear function F(k, V) of the Euclidean space-time volume V. A partial differential equation governing its dependence on the scale k is derived and its fixed point is analyzed. For the more restrictive truncation of theory space where F(k, V) is of the form V+V ln V, V+V^2, and V+\sqrt{V}, respectively, the renormalization group equations for the running coupling…
On selfdual spin-connections and asymptotic safety
2016
We explore Euclidean quantum gravity using the tetrad field together with a selfdual or anti-selfdual spin-connection as the basic field variables. Setting up a functional renormalization group (RG) equation of a new type which is particularly suitable for the corresponding theory space we determine the non-perturbative RG flow within a two-parameter truncation suggested by the Holst action. We find that the (anti-)selfdual theory is likely to be asymptotically safe. The existing evidence for its non-perturbative renormalizability is comparable to that of Einstein-Cartan gravity without the selfduality condition.
Renormalization group flow of the Holst action
2010
The renormalization group (RG) properties of quantum gravity are explored, using the vielbein and the spin connection as the fundamental field variables. The scale dependent effective action is required to be invariant both under space time diffeomorphisms and local frame rotations. The nonperturbative RG equation is solved explicitly on the truncated theory space defined by a three parameter family of Holst-type actions which involve a running Immirzi parameter. We find evidence for the existence of an asymptotically safe fundamental theory, probably inequivalent to metric quantum gravity constructed in the same way.
Gluon mass generation in the PT-BFM scheme
2006
In this article we study the general structure and special properties of the Schwinger-Dyson equation for the gluon propagator constructed with the pinch technique, together with the question of how to obtain infrared finite solutions, associated with the generation of an effective gluon mass. Exploiting the known all-order correspondence between the pinch technique and the background field method, we demonstrate that, contrary to the standard formulation, the non-perturbative gluon self-energy is transverse order-by-order in the dressed loop expansion, and separately for gluonic and ghost contributions. We next present a comprehensive review of several subtle issues relevant to the search …
Inverse symmetry breaking and the exact renormalization group
1996
We discuss the question of inverse symmetry breaking at non-zero temperature using the exact renormalization group. We study a two-scalar theory and concentrate on the nature of the phase transition during which the symmetry is broken. We also examine the persistence of symmetry breaking at temperatures higher than the critical one.
Electric-magnetic duality and renormalization in curved spacetimes
2014
We point out that the duality symmetry of free electromagnetism does not hold in the quantum theory if an arbitrary classical gravitational background is present. The symmetry breaks in the process of renormalization, as also happens with conformal invariance. We show that a similar duality-anomaly appears for a massless scalar field in $1+1$ dimensions.
Proper Time Flow Equation for Gravity
2004
We analyze a proper time renormalization group equation for Quantum Einstein Gravity in the Einstein-Hilbert truncation and compare its predictions to those of the conceptually different exact renormalization group equation of the effective average action. We employ a smooth infrared regulator of a special type which is known to give rise to extremely precise critical exponents in scalar theories. We find perfect consistency between the proper time and the average action renormalization group equations. In particular the proper time equation, too, predicts the existence of a non-Gaussian fixed point as it is necessary for the conjectured nonperturbative renormalizability of Quantum Einstein…
A comment on the relationship between differential and dimensional renormalization
1992
We show that there is a very simple relationship between differential and dimensional renormalization of low-order Feynman graphs in renormalizable massless quantum field theories. The beauty of the differential approach is that it achieves the same finite results as dimensional renormalization without the need to modify the space time dimension.
Renormalization group improved gravitational actions: A Brans-Dicke approach
2003
A new framework for exploiting information about the renormalization group (RG) behavior of gravity in a dynamical context is discussed. The Einstein-Hilbert action is RG-improved by replacing Newton's constant and the cosmological constant by scalar functions in the corresponding Lagrangian density. The position dependence of $G$ and $\Lambda$ is governed by a RG equation together with an appropriate identification of RG scales with points in spacetime. The dynamics of the fields $G$ and $\Lambda$ does not admit a Lagrangian description in general. Within the Lagrangian formalism for the gravitational field they have the status of externally prescribed ``background'' fields. The metric sat…