Search results for "Novae"
showing 10 items of 57 documents
Carbon Monoxide in the Cold Debris of Supernova 1987A
2013
We report spectroscopic and imaging observations of rotational transitions of cold CO and SiO in the ejecta of SN1987A, the first such emission detected in a supernova remnant. In addition to line luminosities for the CO J=1-0, 2-1, 6-5, and 7-6 transitions, we present upper limits for all other transitions up to J=13-12, collectively measured from the Atacama Large Millimeter Array (ALMA), the Atacama Pathfinder EXperiment (APEX), and the Herschel Spectral and Photometric Imaging REceiver (SPIRE). Simple models show the lines are emitted from at least 0.01 solar masses of CO at a temperature > 14 K, confined within at most 35% of a spherical volume expanding at ~ 2000 km/s. Moreover, we…
Relativistic simulations of rotational core collapse : II. Collapse dynamics and gravitational radiation
2002
We have performed hydrodynamic simulations of relativistic rotational supernova core collapse in axisymmetry and have computed the gravitational radiation emitted by such an event. Details of the methodology and of the numerical code have been given in an accompanying paper. We have simulated the evolution of 26 models in both Newtonian and relativistic gravity. Our simulations show that the three different types of rotational supernova core collapse and gravitational waveforms identified in previous Newtonian simulations (regular collapse, multiple bounce collapse, and rapid collapse) are also present in relativistic gravity. However, rotational core collapse with multiple bounces is only …
The IceCube realtime alert system
2016
Following the detection of high-energy astrophysical neutrinos in 2013, their origin is still unknown. Aiming for the identification of an electromagnetic counterpart of a rapidly fading source, we have implemented a realtime analysis framework for the IceCube neutrino observatory. Several analyses selecting neutrinos of astrophysical origin are now operating in realtime at the detector site in Antarctica and are producing alerts to the community to enable rapid follow-up observations. The goal of these observations is to locate the astrophysical objects responsible for these neutrino signals. This paper highlights the infrastructure in place both at the South Pole detector site and at IceC…
ROLE OF EJECTA CLUMPING AND BACK-REACTION OF ACCELERATED COSMIC RAYS IN THE EVOLUTION OF TYPE Ia SUPERNOVA REMNANTS
2012
We investigate the role played by initial clumping of ejecta and by efficient acceleration of cosmic rays (CRs) in determining the density structure of the post-shock region of a Type Ia supernova remnant (SNR) through detailed 3D MHD modeling. Our model describes the expansion of a SNR through a magnetized interstellar medium (ISM), including the initial clumping of ejecta and the effects on shock dynamics due to back-reaction of accelerated CRs. The model predictions are compared to the observations of SN 1006. We found that the back-reaction of accelerated CRs alone cannot reproduce the observed separation between the forward shock (FS) and the contact discontinuity (CD) unless the energ…
Evidence for past interaction with an asymmetric circumstellar shell in the young SNR Cassiopeia A
2022
Observations of the SNR Cassiopeia A (Cas A) show asymmetries in the reverse shock that cannot be explained by models describing a remnant expanding through a spherically symmetric wind of the progenitor star. We investigate whether a past interaction of Cas A with an asymmetric circumstellar shell can account for the observed asymmetries. We performed 3D MHD simulations that describe the remnant evolution from the SN to its interaction with a circumstellar shell. The initial conditions are provided by a 3D neutrino-driven SN model whose morphology resembles Cas A. We explored the parameter space of the shell, searching for a set of parameters able to produce reverse shock asymmetries at th…
Astrophysical constraints on extended gravity models
2015
We investigate the propagation of gravitational waves in the context of fourth order gravity nonminimally coupled to a massive scalar field. Using the damping of the orbital period of coalescing stellar binary systems, we impose constraints on the free parameters of extended gravity models. In particular, we find that the variation of the orbital period is a function of three mass scales which depend on the free parameters of the model under consideration; we can constrain these mass scales from current observational data.
Decoherence in supernova neutrino transformations suppressed by deleptonization
2007
16 pages, 12 figures.-- PACS nrs.: 14.60.Pq; 97.60.Bw.-- ISI Article Identifier: 000251987300100.-- ArXiv pre-print available at: http://arxiv.org/abs/0706.2498
Strongly decelerated expansion of SN 1979C
2002
We observed SN1979C in M100 on 4 June 1999, about twenty years after explosion, with a very sensitive four-antenna VLBI array at the wavelength of 18cm. The distance to M100 and the expansion velocities are such that the supernova cannot be fully resolved by our Earth-wide array. Model-dependent sizes for the source have been determined and compared with previous results. We conclude that the supernova shock was initially in free expansion for 6 +/- 2 yrs and then experienced a very strong deceleration. The onset of deceleration took place a few years before the abrupt trend change in the integrated radio flux density curves. We estimate the shocked swept-up mass to be about 1.6 solar masse…
Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube
2014
Made available in DSpace on 2022-04-29T07:21:49Z (GMT). No. of bitstreams: 0 Previous issue date: 2014-11-17 We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitational-wave observatories and the partially completed IceCube high-energy neutrino detector, including periods of joint operation between 2007-2010. These include parts of the 2005-2007 run and the 2009-2010 run for LIGO-Virgo, and IceCube's observation periods with 22, 59 and 79 strings. We find no significant coincident events, and use the search results to derive upper limits on the rate of joint sources for a range of source emission parameters. For the optimistic assumption of …
How to form a millisecond magnetar? Magnetic field amplification in protoneutron stars
2017
Extremely strong magnetic fields of the order of $10^{15}\,{\rm G}$ are required to explain the properties of magnetars, the most magnetic neutron stars. Such a strong magnetic field is expected to play an important role for the dynamics of core-collapse supernovae, and in the presence of rapid rotation may power superluminous supernovae and hypernovae associated to long gamma-ray bursts. The origin of these strong magnetic fields remains, however, obscure and most likely requires an amplification over many orders of magnitude in the protoneutron star. One of the most promising agents is the magnetorotational instability (MRI), which can in principle amplify exponentially fast a weak initia…