Search results for "Nuclear & Particles Physics"

showing 10 items of 6370 documents

Measurement of acoustic attenuation in South Pole ice

2010

Using the South Pole Acoustic Test Setup (SPATS) and a retrievable transmitter deployed in holes drilled for the IceCube experiment, we have measured the attenuation of acoustic signals by South Pole ice at depths between 190 m and 500 m. Three data sets, using different acoustic sources, have been analyzed and give consistent results. The method with the smallest systematic uncertainties yields an amplitude attenuation coefficient alpha = 3.20 \pm 0.57 km^(-1) between 10 and 30 kHz, considerably larger than previous theoretical estimates. Expressed as an attenuation length, the analyses give a consistent result for lambda = 1/alpha of ~1/300 m with 20% uncertainty. No significant depth or …

Acoustic attenuation; Acoustics; Ice; Neutrino astronomy; South Pole[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]010504 meteorology & atmospheric sciences[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]iceFOS: Physical sciencesAetiology screening and detection [ONCOL 5]Lambda01 natural sciencesneutrino astronomy[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]OpticsSpectrum0103 physical sciencesacousticsInstrumentation and Methods for Astrophysics (astro-ph.IM)0105 earth and related environmental sciencesPhysicsSouth Pole010308 nuclear & particles physicsbusiness.industryAttenuation[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]TransmitterAttenuation lengthAstronomy and AstrophysicsGeodesy004AmplitudeAttenuation coefficientddc:540NeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsbusinessAcoustic attenuationinfo:eu-repo/classification/ddc/004acoustic attenuation
researchProduct

Developments towards in-gas-jet laser spectroscopy studies of actinium isotopes at LISOL

2015

To study exotic nuclides at the borders of stability with laser ionization and spectroscopy techniques, highest efficiencies in combination with a high spectral resolution are required. These usually opposing requirements are reconciled by applying the in-gas-laser ionization and spectroscopy (IGLIS) technique in the supersonic gas jet produced by a de Laval nozzle installed at the exit of the stopping gas cell. Carrying out laser ionization in the low-temperature and low density supersonic gas jet eliminates pressure broadening, which will significantly improve the spectral resolution. This article presents the required modifications at the Leuven Isotope Separator On-Line (LISOL) facility…

ActiniumNuclear and High Energy PhysicsRocket engine nozzleSeparator (oil production)chemistry.chemical_elementactinium[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciencesResonance ionization spectroscopylaw.inventionAtmospheric-pressure laser ionizationlawIonization0103 physical sciencesPhysics::Atomic Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsSpectroscopyInstrumentationGas jetJet (fluid)ta114010308 nuclear & particles physicsChemistrygas cellLaserActiniumresonance ionization spectroscopygas jetAtomic physicsGas cellNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

First Multi-wavelength Campaign on the Gamma-ray-loud Active Galaxy IC 310

2017

The extragalactic VHE gamma-ray sky is rich in blazars. These are jetted active galactic nuclei viewed at a small angle to the line-of-sight. Only a handful of objects viewed at a larger angle are known so far to emit above 100 GeV. Multi-wavelength studies of such objects up to the highest energies provide new insights into the particle and radiation processes of active galactic nuclei. We report the results from the first multi-wavelength campaign observing the TeV detected nucleus of the active galaxy IC 310, whose jet is observed at a moderate viewing angle of 10 deg - 20 deg. The multi-instrument campaign was conducted between 2012 Nov. and 2013 Jan., and involved observations with MAG…

Active galactic nucleusAstronomyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesEnergy fluxAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsGalaxies: active; Galaxies: individual: IC 310; Gamma rays: galaxies; Astronomy and Astrophysics; Space and Planetary Science01 natural scienceslaw.inventionlawGalaxies: individual: IC 3100103 physical sciencesindividual: IC 310 [galaxies]Blazar010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsgalaxie [Gamma rays]010308 nuclear & particles physicsGamma rayAstronomy and AstrophysicsGalaxies: activeAstronomy and AstrophysicAstrophysics - Astrophysics of GalaxiesSynchrotrongamma rays: galaxies ; galaxies: active ; individual (IC 310)Gamma rays: galaxiesSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)active [galaxies]galaxies [gamma rays]ComputingMethodologies_DOCUMENTANDTEXTPROCESSINGSpectral energy distributionddc:520Astrophysics - High Energy Astrophysical PhenomenaFermi Gamma-ray Space TelescopeFlare
researchProduct

Extended X-ray emission in PKS 1718-649

2018

PKS 1718$-$649 is one of the closest and most comprehensively studied candidates of a young active galactic nucleus (AGN) that is still embedded in its optical host galaxy. The compact radio structure, with a maximal extent of a few parsecs, makes it a member of the group of compact symmetric objects (CSO). Its environment imposes a turnover of the radio synchrotron spectrum towards lower frequencies, also classifying PKS 1718$-$649 as gigahertz-peaked radio spectrum (GPS) source. Its close proximity has allowed the first detection of extended X-ray emission in a GPS/CSO source with Chandra that is for the most part unrelated to nuclear feedback. However, not much is known about the nature …

Active galactic nucleusAstrophysics::High Energy Astrophysical PhenomenaAstronomyFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesRadio spectrumlaw.inventionlawIonization0103 physical sciences010303 astronomy & astrophysicsGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)Astrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsStar formationAntenna apertureAstronomy and AstrophysicsAstrophysics - Astrophysics of GalaxiesSynchrotronGalaxySupernovaSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Astrophysics - High Energy Astrophysical PhenomenaAstronomy & Astrophysics
researchProduct

Wind-luminosity evolution in NLS1 AGN 1H 0707−495

2021

Ultra-fast outflows (UFOs) have been detected in the high-quality X-ray spectra of a number of active galactic nuclei (AGN) with fairly high accretion rates and are thought to significantly contribute to the AGN feedback. After a decade of dedicated study, their launching mechanisms and structure are still not well understood, but variability techniques may provide useful constraints. In this work, therefore, we perform a flux-resolved X-ray spectroscopy on a highly accreting and variable NLS1 AGN, 1H 0707-495, using all archival XMM-Newton observations to study the structure of the UFO. We find that the wind spectral lines weaken at higher luminosities, most likely due to an increasing ion…

Active galactic nucleusAstrophysics::High Energy Astrophysical Phenomenablack hole physicsFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesSpectral lineLuminosityaccretionIonization0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsEmission spectrum010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAccretion (meteorology)010308 nuclear & particles physicsAstronomy and AstrophysicsRadiusaccretion discsgalaxies: SeyfertSpace and Planetary ScienceX-rays: individual: 1H 0707−495OutflowAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Monthly Notices of the Royal Astronomical Society
researchProduct

The history of chemical enrichment in the intracluster medium from cosmological simulations

2017

The distribution of metals in the intracluster medium (ICM) of galaxy clusters provides valuable information on their formation and evolution, on the connection with the cosmic star formation and on the effects of different gas processes. By analyzing a sample of simulated galaxy clusters, we study the chemical enrichment of the ICM, its evolution, and its relation with the physical processes included in the simulation and with the thermal properties of the core. These simulations, consisting of re-simulations of 29 Lagrangian regions performed with an upgraded version of the SPH GADGET-3 code, have been run including two different sets of baryonic physics: one accounts for radiative coolin…

Active galactic nucleusCosmology and Nongalactic Astrophysics (astro-ph.CO)Radiative coolingGalaxies:clusters:general; Galaxies:clusters:Intracluster medium; Methods: numerical; Astronomy and Astrophysics; Space and Planetary ScienceMetallicityFOS: Physical sciencesclusters:Intracluster medium [Galaxies]AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSmoothed-particle hydrodynamicsclusters:general [Galaxies]Intracluster medium0103 physical sciencesGalaxies:clusters:Intracluster medium010303 astronomy & astrophysicsGalaxy clusterAstrophysics::Galaxy AstrophysicsPhysicsnumerical [Methods]Methods: numerical010308 nuclear & particles physicsStar formationAstronomyAstronomy and AstrophysicsAstronomy and AstrophysicAstrophysics - Astrophysics of GalaxiesGalaxies:clusters:generalSupernova13. Climate actionSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Coupling hydrodynamics and radiation calculations for star-jet interactions in active galactic nuclei

2016

Context. Stars and their winds can contribute to the non-thermal emission in extragalactic jets. Because of the complexity of jet-star interactions, the properties of the resulting emission are closely linked to those of the emitting flows. Aims. We simulate the interaction between a stellar wind and a relativistic extragalactic jet and use the hydrodynamic results to compute the non-thermal emission under different conditions. Methods. We performed relativistic axisymmetric hydrodynamical simulations of a relativistic jet interacting with a supersonic, non-relativistic stellar wind. We computed the corresponding streamlines out of the simulation results and calculated the injection, evolut…

Active galactic nucleusElectromagnetic spectrumAstrophysics::High Energy Astrophysical PhenomenaAstrophysics::Cosmology and Extragalactic AstrophysicsElectronAstrophysicsRadiation7. Clean energy01 natural sciencessymbols.namesake0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHidrodinàmica010308 nuclear & particles physicsAstronomy and AstrophysicsStarsEstelsMagnetic fieldParticle accelerationStars13. Climate actionSpace and Planetary ScienceHydrodynamicssymbolsDoppler effectAstronomy & Astrophysics
researchProduct

Jet-torus connection in radio galaxies

2017

High-resolution Very-Long-Baseline Interferometry observations of active galactic nuclei have revealed asymmetric structures in the jets of radio galaxies. These asymmetric structures may be due to internal asymmetries in the jet, could be induced by the different conditions in the surrounding ambient medium including the obscuring torus, or a combination of the two. In this paper we investigate the influence of the ambient medium (including the obscuring torus) on the observed properties of jets from radio galaxies. We performed special-relativistic hydrodynamic (RHD) simulations of over-pressured and pressure-matched jets using the special-relativistic hydrodynamics code \texttt{Ratpenat}…

Active galactic nucleusRadio galaxyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesElectromagnetic radiationGeneral Relativity and Quantum Cosmology0103 physical sciencesVery-long-baseline interferometryRadiative transfer010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsJet (fluid)Spectral index010308 nuclear & particles physicsAstronomy and AstrophysicsTorusAstrophysics - Astrophysics of Galaxies13. Climate actionSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Astrophysics - High Energy Astrophysical PhenomenaAstronomy & Astrophysics
researchProduct

Correlation of the highest-energy cosmic rays with nearby extragalactic objects.

2007

Using data collected at the Pierre Auger Observatory during the past 3.7 years, we demonstrated a correlation between the arrival directions of cosmic rays with energy above ~ 6x10^{19} electron volts and the positions of active galactic nuclei (AGN) lying within ~ 75 megaparsecs. We rejected the hypothesis of an isotropic distribution of these cosmic rays with at least a 99% confidence level from a prescribed a priori test. The correlation we observed is compatible with the hypothesis that the highest energy particles originate from nearby extragalactic sources whose flux has not been substantially reduced by interaction with the cosmic background radiation. AGN or objects having a similar…

Active galactic nucleus[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]AstronomyAstrophysics::High Energy Astrophysical Phenomenaparticle source [cosmic radiation]Cosmic background radiationFOS: Physical sciencesFluxOsservatorio Pierre AugerCosmic rayanisotropyAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciences[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Raggi cosmici0103 physical sciencesUltra-high-energy cosmic ray010303 astronomy & astrophysicsBackground radiationNuclei galattivi attiviPhysicsPierre Auger ObservatorySPECTRUMMultidisciplinary[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsMedicine (all); MultidisciplinaryMedicine (all)Settore FIS/01 - Fisica SperimentaleAstrophysics (astro-ph)angular dependence [cosmic radiation]Astrophysics::Instrumentation and Methods for AstrophysicsFísicaEnergia ultra altaExperimental High Energy Physicsddc:500Energy (signal processing)experimental results
researchProduct

Long-term monitoring of mrk 501 for its very high energy γ emission and a flare in 2011 october

2012

"As one of the brightest active blazars in both X-ray and very high energy γ -ray bands, Mrk 501, is very useful for" "physics associated with jets from active galactic nuclei. The ARGO-YBJ experiment has monitored Mrk 501 for γ - rays above 0.3 TeV since 2007 November. The largest flare since 2005 was observed from 2011 October and lasted until about 2012 April. In this paper, a detailed analysis of this event is reported. During the brightest γ -ray flaring episodes from 2011 October 17 to November 22, an excess of the event rate over 6σ is detected by ARGO-YBJ in the direction of Mrk 501, corresponding to an increase of the γ -ray flux above 1 TeV by a factor of 6.6 ± 2.2 from its steady…

Active galactic nucleusactive" ["galaxies]Astrophysics::High Energy Astrophysical PhenomenaFluxAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics7. Clean energy01 natural sciencesSpectral linelaw.inventionlaw0103 physical sciencesBlazar010303 astronomy & astrophysicsPhysicsindividual (Markarian 501) – galaxies: active – gamma rays: general – radiation mechanisms: non-thermal [BL Lacertae objects]" "general" ["gamma rays]010308 nuclear & particles physicsBL Lacertae objects: individual (Markarian 501) – galaxies: active – gamma rays: general – radiation mechanisms: non-thermalSettore FIS/01 - Fisica SperimentaleAstronomy and AstrophysicsQuasarGalaxyindividual (Markarian 501)" ["BL Lacertae objects]13. Climate actionSpace and Planetary ScienceSpectral energy distributionFlare
researchProduct