Search results for "Nuclear Matrix"

showing 10 items of 53 documents

Functional characterization of Tat protein from human immunodeficiency virus. Evidence that Tat links viral RNAs to nuclear matrix.

1990

The processes of transcription and posttranscription are assumed to proceed in close association with the nuclear matrix. In this study we demonstrated that Tat, the trans-activating protein from human immunodeficiency virus type 1 (HIV-1), binds both to the TAR region of the nascent HIV mRNAs and the nuclear matrix with high affinity. Both North/Western blotting experiments and nitrocellulose binding studies revealed that Tat binds with an association constant (K alpha) of approximately 1 x 10(9) M-1 to the TAR segment of HIV RNA; binding of Tat to this sequence which is present between position 32 and 82 downstream from the TATA box was also confirmed by gel retardation assays. Binding of…

Messenger RNAViral matrix proteinTranscription GeneticTATA boxBinding proteinGene Products gagCell BiologyBiologyNuclear matrixBiochemistryMolecular biologyCell LineTranscription (biology)Gene Products tatHIV-1Trans-ActivatorsHumansRNA ViralNuclear Matrixtat Gene Products Human Immunodeficiency VirusCloning MolecularBinding siteMolecular BiologyProtein secondary structure
researchProduct

New determination of double-β-decay properties in48Ca: High-precisionQββ-value measurement and improved nuclear matrix element calculations

2014

We report a direct measurement of the Q-value of the neutrinoless double-beta-decay candidate 48Ca at the TITAN Penning-trap mass spectrometer, with the result that Q = 4267.98(32) keV. We measured the masses of both the mother and daughter nuclides, and in the latter case found a 1 keV deviation from the literature value. In addition to the Q-value, we also present results of a new calculation of the neutrinoless double-beta-decay nuclear matrix element of 48Ca. Using diagrammatic many-body perturbation theory to second order to account for physics outside the valence space, we constructed an effective shell-model double-beta-decay operator, which increased the nuclear matrix element by ab…

PhysicsNuclear and High Energy PhysicsValence (chemistry)010308 nuclear & particles physicsMass spectrometryNuclear matrix01 natural sciencesNuclear physics0103 physical sciencesMatrix elementNuclideNuclear Experiment010306 general physicsNuclear theoryPhysical Review C
researchProduct

Spin-multipole nuclear matrix elements in the pn quasiparticle random-phase approximation: Implications for β and ββ half-lives

2017

Half-lives for 148 potentially measurable 2nd-, 3rd-, 4th-, 5th-, 6th-, and 7th-forbidden unique beta transitions are predicted. To achieve this, the ratio of the nuclear matrix elements (NMEs), calculated by the proton-neutron quasiparticle random-phase approximation (pnQRPA), MpnQRPA, and a two-quasiparticle (two-qp) model, Mqp, is studied and compared with earlier calculations for the allowed Gamow-Teller (GT) 1+ and first-forbidden spin-dipole (SD) 2− transitions. The present calculations are done using realistic single-particle model spaces and G-matrix based microscopic two-body interactions. In terms of the ratio k = MpnQRPA/Mqp the studied decays fall into two groups: for GROUP 1, w…

forbidden beta decaybeta decaynuclear matrix elementsproton-neutron quasiparticle random-phase approximation
researchProduct

UVA irradiation induces relocalisation of the DNA repair protein hOGG1 to nuclear speckles

2006

The DNA glycosylase hOGG1 initiates base excision repair (BER) of oxidised purines in cellular DNA. Using confocal microscopy and biochemical cell fractionation experiments we show that, upon UVA irradiation of human cells, hOGG1 is recruited from a soluble nucleoplasmic localisation to the nuclear matrix. More specifically, after irradiation, hOGG1 forms foci colocalising with the nuclear speckles, organelles that are interspersed between chromatin domains and that have been associated with transcription and RNA-splicing processes. The use of mutant forms of hOGG1 unable to bind the substrate showed that relocalisation of hOGG1 does not depend on the recognition of the DNA lesion by the en…

DNA RepairTranscription GeneticUltraviolet RaysDNA repairRecombinant Fusion ProteinsGreen Fluorescent ProteinsFluorescent Antibody TechniqueBiologyDNA GlycosylasesSubstrate Specificitychemistry.chemical_compoundDNA Repair ProteinDNA-(Apurinic or Apyrimidinic Site) LyaseHumansCell NucleusGuanosineBiological TransportCell BiologyBase excision repairNuclear matrixMolecular biologyChromatinCell biologychemistryDNA glycosylaseCell fractionationReactive Oxygen SpeciesDNAHeLa CellsJournal of Cell Science
researchProduct

Fascinating puzzle called double beta decay

2019

The question of whether neutrinos are Majorana or Dirac particles and what are their average masses remains one of the most fundamental problems in physics today. Observation of neutrinoless double beta decay (0νββ) would verify the Majorana nature of the neutrino and constrain the absolute scale of the neutrino mass spectrum. The inverse half-life for 0νββ-decay is given by the product of a phase space factor (PSF), a nuclear matrix element (NME), which both rely on theoretical description, and a function f containing the physics beyond the standard model. Recent calculations of PSF and NME will be reviewed together with comparison to other available results. These calculations serve the p…

PhysicsParticle physicsDirac (video compression format)Physics beyond the Standard ModelHigh Energy Physics::Phenomenologyneutriinotdouble beta decaynuclear matrix elementshiukkasfysiikkaMAJORANADouble beta decayPhase spaceMass spectrumHigh Energy Physics::ExperimentNeutrinoydinfysiikkaAbsolute scale
researchProduct

0νββ and 2νββ nuclear matrix elements in the interacting boson model with isospin restoration

2015

We introduce a method for isospin restoration in the calculation of nuclear matrix elements (NMEs) for 0νββ and 2νββ decay within the framework of the microscopic interacting boson model (IBM-2). With this method, we calculate the NMEs for all processes of interest in 0νβ−β− and 2νβ−β− and in 0νβ+β+, 0νECβ+, R0νECEC, 2νβ+β+, 2νECβ+, and 2νECEC. With this method, the Fermi matrix elements for 2νββ vanish, and those for 0νββ are considerably reduced. peerReviewed

double beta decaynuclear matrix elements
researchProduct

Neutrino-nuclear responses for astro-neutrinos, single beta decays and double beta decays

2019

Neutrino–nuclear responses associated with astro-neutrinos, single beta decays and double beta decays are crucial in studies of neutrino properties of interest for astro-particle physics. The present report reviews briefly recent studies of the neutrino–nuclear responses from both experimental and theoretical points of view in order to obtain a consistent understanding of the many facets of the neutrino–nuclear responses. Subjects discussed in this review include (i) experimental studies of neutrino–nuclear responses by means of single beta decays, charge-exchange nuclear reactions, muon- photon- and neutrino–nuclear reactions, and nucleon-transfer reactions, (ii) implications of and discus…

double beta decaysPhysics::Instrumentation and Detectorssingle beta decaysastrofysiikkaHigh Energy Physics::PhenomenologyNuclear Theorymuon captureneutriinotneutrino-nucleus interactionsnuclear matrix elementsastro-neutrinosphoto-nuclear reactionsaxial-vector couplingsolar neutrinosHigh Energy Physics::Experimentcharge-exchange reactionsNuclear Experimentsupernova neutrinos
researchProduct

2021

Comparative analyses of the nuclear matrix elements (NMEs) related to the 0νβ+β+ decay of 106Cd to the ground state of 106Pd and the ordinary muon capture (OMC) in 106Cd are performed. This is the first time the OMC NMEs are studied for a nucleus decaying via positron-emitting/electron-capture modes of double beta decay. All the present calculations are based on the proton-neutron quasiparticle random-phase approximation with large no-core single-particle bases and realistic two-nucleon interactions. The effect of the particle-particle interaction parameter gpp of pnQRPA on the NMEs is discussed. In the case of the OMC, the effect of different bound-muon wave functions is studied.

Physics010308 nuclear & particles physicsMaterials Science (miscellaneous)BiophysicsGeneral Physics and AstronomyFlory–Huggins solution theoryNuclear matrix01 natural sciencesMuon captureNuclear physicsmedicine.anatomical_structureDouble beta decay0103 physical sciencesmedicineQuasiparticlePhysical and Theoretical Chemistry010306 general physicsWave functionGround stateNucleusMathematical PhysicsFrontiers in Physics
researchProduct

Myotonic dystrophy associated expanded CUG repeat muscleblind positive ribonuclear foci are not toxic to Drosophila

2005

Myotonic dystrophy type 1 is an autosomal dominant disorder associated with the expansion of a CTG repeat in the 3 0 untranslated region (UTR) of the DMPK gene. Recent data suggest that pathogenesis is predominantly mediated by a gain of function of the mutant transcript. In patients, these expanded CUG repeat-containing transcripts are sequestered into ribonuclear foci that also contain the muscleblind-like proteins. To provide further insights into muscleblind function and the pathogenesis of myotonic dystrophy, we generated Drosophila incorporating CTG repeats in the 3 0 -UTR of a reporter gene. As in patients, expanded CUG repeats form discrete ribonuclear foci in Drosophila muscle cell…

Untranslated regioncongenital hereditary and neonatal diseases and abnormalitiesRNA StabilityProtein Serine-Threonine KinasesBiologyMyotonic dystrophyMyotonin-Protein KinaseGeneticsmedicineAnimalsHumansMyotonic Dystrophy3' Untranslated RegionsMolecular BiologyGeneGenetics (clinical)GeneticsRNAGeneral MedicineNuclear matrixbiology.organism_classificationmedicine.diseaseCell biologyRNA silencingDrosophila melanogasterRNA splicingDrosophila melanogasterTrinucleotide Repeat ExpansionHuman Molecular Genetics
researchProduct

Association of AUUUA-binding Protein with A + U-rich mRNA during nucleo-cytoplasmic transport

1992

Resealed nuclear envelope (NE) vesicles from rat liver containing entrapped exogenous RNA were used to study the effect of adenosine+uridine binding factor (AUBF), present in cytosolic cell extracts, on ATP-dependent transport of A+U-rich RNA (AU+RNA) and A+U-free RNA (AU-RNA) across the NE. This factor specifically binds to A+U-rich sequences present in the 3' untranslated regions of lymphokine and cytokine mRNAs, containing overlapping AUUUA boxes (granulocyte-macrophage colony stimulating factor, interleukin-3). Addition of AUBF to the extravesicular compartment markedly increased the efflux of the in vitro transcribed, capped and polyadenylated AU+ RNAs. Export of entrapped AU- control …

Untranslated regionCytoplasmAdenosineTranscription GeneticPolyadenylationNuclear EnvelopeMolecular Sequence DataRNA-binding proteinBiologyCell LineStructural BiologyTranscription (biology)EndoribonucleasesAnimalsHumansNuclear MatrixRNA MessengerBinding siteNuclear export signalUridineMolecular BiologyCell NucleusMessenger RNABinding SitesBase SequenceGranulocyte-Macrophage Colony-Stimulating FactorInterferon-alphaRNA-Binding ProteinsRNAMolecular biologyRatsKineticsLiverRibonucleoproteinsInterleukin-3Carrier ProteinsPlasmidsPolyribonucleotidesProtein BindingJournal of Molecular Biology
researchProduct