Search results for "Nuclear Structure"
showing 10 items of 401 documents
Exploring the mass surface near the rare-earth abundance peak via precision mass measurements at JYFLTRAP
2019
The JYFLTRAP double Penning trap at the Ion Guide Isotope Separator On-Line (IGISOL) facility has been used to measure the atomic masses of 13 neutron-rich rare-earth isotopes. Eight of the nuclides, $^{161}$Pm, $^{163}$Sm, $^{164,165}$Eu, $^{167}$Gd, and $^{165,167,168}$Tb, were measured for the first time. The systematics of the mass surface has been studied via one- and two-neutron separation energies as well as neutron pairing-gap and shell-gap energies. The proton-neutron pairing strength has also been investigated. The impact of the new mass values on the astrophysical rapid neutron capture process has been studied. The calculated abundance distribution results in a better agreement w…
Microscopic calculation of the LSP detection rates for the 71Ga, 73Ge and 127I dark-matter detectors
2004
Abstract We have investigated the nuclear-structure details of the cross sections for the elastic scattering of Lightest Supersymmetric Particles (LSPs) from the promising dark-matter detectors 71 Ga, 73 Ge and 127 I. The associated LSP detection sensitivities have been obtained by a folding procedure for several recently proposed SUSY models with different scalar and axial-vector characteristics. For the nuclear problem, a realistic microscopic Hamiltonian has been used within realistic model spaces. The diagonalization of this Hamiltonian has been done by using the Microscopic Quasiparticle–Phonon Model (MQPM), suitable for description of spectroscopic properties of medium-heavy and heavy…
High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED
2017
Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209Bi82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron–nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209Bi82+,80+ with a precision that is improve…
Multinucleon transfer reactions and proton transfer channels
2019
Transfer reactions have always been of great importance for nuclear structure and reaction mechanism studies. So far, in multinucleon transfer studies, proton pickup channels have been completely identified in atomic and mass numbers at energies close to the Coulomb barrier only in few cases. We measured the multinucleon transfer reactions in the 40Ar+208Pb system near the Coulomb barrier, by employing the PRISMA magnetic spectrometer. By using the most neutron-rich stable 40Ar beam we could populate, besidesneutron pickup and proton stripping channels, also neutron stripping and proton pickup channels. Comparison ofcross sections between different systems with the 208Pb target and with pro…
Decay studies of the long-lived states in $^{186}$Tl
2020
Decay spectroscopy of the long-lived states in $^{186}$Tl has been performed at the ISOLDE Decay Station at ISOLDE, CERN. The $\alpha$ decay from the low-spin $(2^-)$ state in $^{186}$Tl was observed for the first time and a half-life of $3.4^{+0.5}_{-0.4}$ s was determined. Based on the $\alpha$-decay energy, the relative positions of the long-lived states were fixed, with the $(2^-)$ state as the ground state, the $7^{(+)}$ state at 77(56)~keV and the $10^{(-)}$ state at 451(56) keV. The level scheme of the internal decay of the $^{186}$Tl($10^{(-)}$) state ($T_{1/2} = 3.40(9)$ s), which was known to decay solely through emission of 374 keV $\gamma$-ray transition, was extended and a lowe…
Gamow-Teller response in the configuration space of a density-functional-theory–rooted no-core configuration-interaction model
2018
Background: The atomic nucleus is a unique laboratory in which to study fundamental aspects of the electroweak interaction. This includes a question concerning in medium renormalization of the axial-vector current, which still lacks satisfactory explanation. Study of spin-isospin or Gamow-Teller (GT) response may provide valuable information on both the quenching of the axial-vector coupling constant as well as on nuclear structure and nuclear astrophysics.Purpose: We have performed a seminal calculation of the GT response by using the no-core configuration-interaction approach rooted in multireference density functional theory (DFT-NCCI). The model treats properly isospin and rotational sy…
New Results from the NUMEN Project
2020
NUMEN aims at accessing experimentally driven information on Nuclear Matrix Elements (NME) involved in the half-life of the neutrinoless double beta decay (0νββ), by high-accuracy measurements of the cross sections of Heavy Ion (HI) induced Double Charge Exchange (DCE) reactions. First evidence about the possibility to get quantitative information about NME from experiments is found for the (18O,18Ne) and (20Ne,20O) reactions. Moreover, to infer the neutrino average masses from the possible measurement of the half-life of 0νββ decay, the knowledge of the NME is a crucial aspect. The key tools for this project are the high resolution Superconducting Cyclotron beams and the MAGNEX magnetic sp…
Transition probability studies in175Au
2013
Transition probabilities have been measured between the low-lying yrast states in 175Au by employing the recoil distance Doppler-shift method combined with the selective recoil-decay tagging technique. Reduced transition probabilities and magnitudes of transition quadrupole moments have been extracted from measured lifetimes allowing dramatic changes in nuclear structure within a low excitation-energy range to probed. The transition quadrupole moment data are discussed in terms of available systematics as a function of atomic number and aligned angular momentum.
The next generation of laser spectroscopy experiments using light muonic atoms
2018
Precision spectroscopy of light muonic atoms provides unique information about the atomic and nuclear structure of these systems and thus represents a way to access fundamental interactions, properties and constants. One application comprises the determination of absolute nuclear charge radii with unprecedented accuracy from measurements of the 2S - 2P Lamb shift. Here, we review recent results of nuclear charge radii extracted from muonic hydrogen and helium spectroscopy and present experiment proposals to access light muonic atoms with Z ≥ 3. In addition, our approaches towards a precise measurement of the Zemach radii in muonic hydrogen (μp) and helium (μ 3He+) are discussed. These resul…
Measurements of ground-state properties for nuclear structure studies by precision mass and laser spectroscopy
2011
Atomic physics techniques like Penning-trap and storage-ring mass spectrometry as well as laser spectroscopy have provided sensitive high-precision tools for detailed studies of nuclear ground-state properties far from the valley of β-stability. Mass, moment and nuclear charge radius measurements in long isotopic and isotonic chains have allowed extraction of nuclear structure information such as halos, shell and subshell closures, the onset of deformation, and the coexistence of nuclear shapes at nearly degenerate energies. This review covers experimental precision techniques to study nuclear ground-state properties and some of the most recent results for nuclear structure studies.