Search results for "Nuclear energy"

showing 10 items of 614 documents

Updated design and integration of the ancillary circuits for the European Test Blanket Systems

2019

The validation of the key technologies relevant for a DEMO Breeding Blanket is one of the main objectives of the design and operation of the Test Blanket Systems (TBS) in ITER. In compliance with the main features and technical requirements of the parent breeding blanket concepts, the European TBM Project is developing the HCLL (Helium Cooled Lithium Lead) and HCPB (Helium Cooled Pebble Bed)-TBS, focusing in this phase on the design life cycle and on R&D activities in support of the design. The TBS ancillary systems are mainly circuits devoted to the removal of thermal power and to the extraction and recovery of the tritium generated in the Test Blanket Modules. They are: • The Helium C…

Computer scienceThermo-mechanical analysiTest Blanket ModuleBlanketCAD integration; Test Blanket Module; Thermo-hydraulic analysis; Thermo-mechanical analysis; Tritium technologies01 natural sciences7. Clean energy010305 fluids & plasmasTritium technologiesConceptual design0103 physical sciencesGeneral Materials Science010306 general physicsSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringElectronic circuitThermo-hydraulic analysisThermo-mechanical analysisMechanical EngineeringCAD integrationCoolantTest (assessment)Nuclear Energy and EngineeringPhysical spaceSystems engineeringThermo-hydraulic analysiFusion Engineering and Design
researchProduct

Consolidated design of the HCPB Breeding Blanket for the pre-Conceptual Design Phase of the EU DEMO and harmonization with the ITER HCPB TBM program

2020

Abstract From 2014 to 2020, the Pre-Conceptual Design phase (PCD) of the EU DEMO has taken place. The activities in the PCD phase differ from past exercises in their strong Systems Engineering methodology, as well as for the pragmatic approach in their technology choices. The Helium Cooled Pebble Bed (HCPB) is one of the 2 candidates as driver blanket for the EU DEMO in the PCD phase. Several design iterations have been required during the PCD phase in order to adjust the design to the current demanding DEMO requirements, to the very challenging systems integration and to the need to keep near-term technologies. To this respect, the design has evolved to a so-called fuel-breeder pin archite…

Computer sciencebusiness.industryMechanical EngineeringNuclear engineeringBlanket01 natural sciences7. Clean energy010305 fluids & plasmasCoolantDesign phaseNuclear Energy and EngineeringConceptual design0103 physical sciencesSystem integrationGeneral Materials Science010306 general physicsbusinessCivil and Structural EngineeringFusion Engineering and Design
researchProduct

Key EU DEMO plant and building layout criteria

2021

Abstract An early attention to the layout of both plant site and its buildings is essential in a complex plant under preliminary design as DEMO in order to meet the assigned targets, namely i) the licensing requirements ii) a good availability in delivery electricity to the grid. The layout definition has to follow several criteria that become more complex and stringent for nuclear buildings, e.g. functional, maintenance, fire protection, safety, human factors, shielding, and remote handling. The criterion As Low As Reasonable Achievable, with respect to the dose to the staff, has to be applied in design, operation, maintenance and decommissioning phases. The tokamak building, where several…

Computer sciencemedia_common.quotation_subjectLayout criteria01 natural sciencesNuclear decommissioning010305 fluids & plasmasHazardous waste0103 physical sciencesFire protectionGeneral Materials Science010306 general physicsFunction (engineering)DEMOCivil and Structural Engineeringmedia_commonTokamak buildingbusiness.industryMechanical EngineeringReference designDEMO; Layout criteria; Safety; Tokamak buildingGridNuclear Energy and EngineeringKey (cryptography)Systems engineeringElectricitySafetybusinessFusion Engineering and Design
researchProduct

Ab initio modeling of oxygen impurity atom incorporation into uranium mononitride surface and subsurface vacancies

2011

The incorporation of oxygen atoms has been simulated into either nitrogen or uranium vacancy at the UN(001) surface, sub-surface or central layers. For calculations on the corresponding slab models both the relativistic pseudopotentials and the method of projector augmented-waves (PAW) as implemented in the VASP computer code have been used. The energies of O atom incorporation and solution within the defective UN surface have been calculated and discussed. For different configurations of oxygen ions at vacancies within the UN(001) slab, the calculated density of states and electronic charge re-distribution was analyzed. Considerable energetic preference of O atom incorporation into the N-v…

Condensed Matter - Materials ScienceNuclear and High Energy PhysicsChemistryAb initiochemistry.chemical_elementMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesUraniumComputational Physics (physics.comp-ph)Elementary chargeNitrogenCondensed Matter::Materials ScienceNuclear Energy and EngineeringVacancy defectAtomDensity of statesSlabPhysics::Atomic and Molecular ClustersGeneral Materials ScienceAtomic physicsPhysics - Computational Physics
researchProduct

Chemisorption of a molecular oxygen on the UN(001) surface: Ab initio calculations

2010

The results of DFT GGA calculations on oxygen molecules adsorbed upon the (0 0 1) surface of uranium mononitride (UN) are presented and discussed. We demonstrate that O2 molecules oriented parallel to the substrate can dissociate either (i) spontaneously when the molecular center lies above the surface hollow site or atop N ion, (ii) with the activation barrier when a molecule sits atop the surface U ion. This explains fast UN oxidation in air.

Condensed Matter - Materials ScienceNuclear and High Energy PhysicsMaterials Science (cond-mat.mtrl-sci)FOS: Physical scienceschemistry.chemical_elementSubstrate (electronics)Computational Physics (physics.comp-ph)UraniumOxygenIonbody regionsAdsorptionNuclear Energy and EngineeringchemistryChemisorptionAb initio quantum chemistry methodsComputational chemistryMoleculePhysical chemistryGeneral Materials SciencePhysics - Computational PhysicsJournal of Nuclear Materials
researchProduct

Ab initio simulation of yttrium oxide nanocluster formation on fcc Fe lattice

2010

Using results of density functional theory (DFT) calculations the first attempt towards the understanding of Y2O3 particles formation in oxide dispersed strengthened (ODS) ferritic–martensitic steels was performed. The present work includes modeling of single defects (O impurity atom, Fe vacancy and Y substitute atom), interaction between substituted Y atoms, Y–Fe vacancy pairs and oxygen impurity atoms in the iron matrix. The calculations have showed the repulsive interaction between the two Y substitute atoms at any separation distances that might mean that the oxygen atoms or O atoms with vacancies are required to form binding between atoms in the yttrium oxide nanoclusters.

Condensed Matter::Quantum GasesNuclear and High Energy PhysicsMaterials scienceAb initioOxidechemistry.chemical_elementYttriumNanoclustersCondensed Matter::Materials ScienceCrystallographychemistry.chemical_compoundNuclear Energy and EngineeringchemistryImpurityVacancy defectAtomPhysics::Atomic and Molecular ClustersGeneral Materials ScienceDensity functional theoryPhysics::Atomic PhysicsPhysics::Chemical PhysicsNuclear chemistryJournal of Nuclear Materials
researchProduct

Preliminary CAD implementation of EU-DEMO primary heat transfer systems for HCPB breeding blanket option

2019

Abstract This paper focuses on the 3D CAD implementation of the pipework and the main equipment of the Primary Heat Transfer System of EU-DEMO fusion power plant. In particular, the systems related to the Helium-Cooled Pebble Bed Breeding Blanket option are considered here. During the pulse operation, the breeding blanket modules will be the main thermal power source; Divertor and the Vacuum Vessel will contribute in the definition of the total reactor power. All the In-Vessel generated power is rejected to the Power Conversion System through a molten salt Intermediate Heat Transport System. The latter is equipped with an Energy Storage System to allow for continuous operation also during t…

Continuous operation020209 energyNuclear engineeringThermal power station02 engineering and technologyBlanket01 natural sciences7. Clean energyPrimary heat transfer systemEnergy storage010305 fluids & plasmasITER0103 physical sciences0202 electrical engineering electronic engineering information engineeringGeneral Materials ScienceCivil and Structural EngineeringPipingMechanical EngineeringDivertorPiping designCoolantEU-DEMONuclear Energy and EngineeringHeat transferEnvironmental scienceHelium-Cooled Pebble Bed Breeding BlanketFusion Engineering and Design
researchProduct

Aufbau und Arbeitsweise eines 12-Kanal- funktionsmeβstandes zur Erfassung und Auswertung schnell ablaufender hämodynamischer Vorgänge

1970

Hemodynamic function studies with radioactive tracers A new set-up, a multichannel function test device, is described for performing hemodynamic function studies with radioactive tracers. After injection of radioactive labelled particles of definite physical and chemical properties, the distribution of radioactivity can be registered simultaneously as function of time at 6 different sites of the body. Each of the 6 detectors used, one of them can be replaced by a fore-arm counter, is equipped with two channels, which can be individually adjusted to the photopeaks of two different radioisotopes. The data are either/not only stored on magnetic tape or/but also fed into a memory unit operating…

Continuous registrationWhole body countingRadiationChemistryRoutine workDetectorAnalytical chemistryMagnetic tapeFunction (mathematics)Time savinglaw.inventionExponential functionNuclear Energy and EngineeringlawRadiology Nuclear Medicine and imagingBiological systemThe International Journal of Applied Radiation and Isotopes
researchProduct

On the impact of the heat transfer modelling approach on the prediction of EU-DEMO WCLL breeding blanket thermal performances

2020

Abstract The Water-Cooled Lithium-Lead Breeding Blanket is a key component of a fusion power plant, in charge of ensure Tritium production, shield Vacuum Vessel and magnets and remove the heat power deposited by radiation and particles arising from plasma. The last function is fulfilled by First Wall and Breeding Zone independent cooling systems. Several layouts of BZ coolant system have been investigated in the last years to identify a configuration that might guarantee EUROFER temperature below the limit (550 °C) and good thermal-hydraulic performances (i.e. water outlet temperature of 328 °C). A research activity is conducted to study and compare different modelling approaches to simulat…

ConvectionLiquid metalMaterials scienceNuclear engineeringBlanket engineeringBlanket7. Clean energy01 natural sciences010305 fluids & plasmasBreeder (animal)0103 physical sciencesGeneral Materials Science010306 general physicsSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringFEMFinite volume methodWCLL; CFD; FEM; breeding blanket; blanket engineeringMechanical EngineeringFinite element methodCoolantWCLLNuclear Energy and EngineeringHeat transferBreeding blanketCFD
researchProduct

Mixed MHD convection and Tritium transport in fusion-relevant configurations

2005

Mixed MHD flow and Tritium transport were computed for a slender poloidal duct, representative of a DEMO HCLL blanket element. 2-D flow and temperature fields were computed in the duct's cross section under the assumption of parallel, fully developed flow, while Tritium concentration C was found by solving a fully 3-D problem with simplifying assumptions at the duct's ends. The spatial distribution of C depended on the intensity and direction of the forced flow. Significant peak factors were obtained if the net flow rate was so low that re-circulation occurred; C maxima were attained near the walls for upward flow, in the core region for downward flow.

ConvectionPhysicsMechanical EngineeringHCLL blanketMechanicsBlanketFusion powerMagnetohydrodynamicVolumetric flow ratePhysics::Fluid DynamicsNuclear physicsNuclear Energy and EngineeringCombined forced and natural convectionFlow conditioningGeneral Materials ScienceDuct (flow)Mixed convectionMagnetohydrodynamicsSettore ING-IND/19 - Impianti NucleariCivil and Structural Engineering
researchProduct