Search results for "Nuclear physic"

showing 10 items of 5307 documents

Measurement of the Cosmic Ray Helium Energy Spectrum from 70 GeV to 80 TeV with the DAMPE Space Mission

2021

The measurement of the energy spectrum of cosmic ray helium nuclei from 70 GeV to 80 TeV using 4.5 years of data recorded by the DArk Matter Particle Explorer (DAMPE) is reported in this work. A hardening of the spectrum is observed at an energy of about 1.3 TeV, similar to previous observations. In addition, a spectral softening at about 34 TeV is revealed for the first time with large statistics and well controlled systematic uncertainties, with an overall significance of $4.3\sigma$. The DAMPE spectral measurements of both cosmic protons and helium nuclei suggest a particle charge dependent softening energy, although with current uncertainties a dependence on the number of nucleons canno…

Astrophysics::High Energy Astrophysical PhenomenaDark matterGeneral Physics and Astronomychemistry.chemical_elementFOS: Physical sciencesCosmic raySpace (mathematics)01 natural sciences7. Clean energyCosmic ray heliumHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesEnergy spectrumcosmic rays dark matter spacecrystals010306 general physicsHeliumPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)COSMIC cancer databasedetectorSettore FIS/01 - Fisica SperimentalecalibrationchemistryParticleAstrophysics - High Energy Astrophysical PhenomenaNucleonperformance
researchProduct

Detailed spectroscopy of doubly magic $^{132}$Sn

2020

The structure of the doubly magic $^{132}_{50}$Sn$_{82}$ has been investigated at the ISOLDE facility at CERN, populated both by the $\beta^-$decay of $^{132}$In and $\beta^-$-delayed neutron emission of $^{133}$In. The level scheme of $^{132}$Sn is greatly expanded with the addition of 68 $\gamma$-transitions and 17 levels observed for the first time in the $\beta$ decay. The information on the excited structure is completed by new $\gamma$-transitions and states populated in the $\beta$-n decay of $^{133}$In. Improved delayed neutron emission probabilities are obtained both for $^{132}$In and $^{133}$In. Level lifetimes are measured via the Advanced Time-Delayed $\beta\gamma\gamma$(t) fas…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesNuclear Physics - Experiment[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Experiment (nucl-ex)nucl-exNuclear StructureNuclear Experiment
researchProduct

Search for muon neutrinos from gamma-ray bursts with the ANTARES neutrino telescope using 2008 to 2011 data

2013

Aims. We search for muon neutrinos in coincidence with GRBs with the ANTARES neutrino detector using data from the end of 2007 to 2011. Methods. Expected neutrino fluxes were calculated for each burst individually. The most recent numerical calculations of the spectra using the NeuCosmA code were employed, which include Monte Carlo simulations of the full underlying photohadronic interaction processes. The discovery probability for a selection of 296 GRBs in the given period was optimised using an extended maximum-likelihood strategy. Results. No significant excess over background is found in the data, and 90% confidence level upper limits are placed on the total expected flux according to …

Astrophysics::High Energy Astrophysical PhenomenaNeutrino telescopeMonte Carlo methodgamma-ray burst: generalFOS: Physical sciencesddc:500.201 natural sciencesCoincidenceSpectral lineGamma ray burstsmethods: numericalNuclear physicsneutrinoHigh Energy Physics - Phenomenology (hep-ph)Raigs gamma0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]NeutrinsNeutrinos010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics:Desenvolupament humà i sostenible [Àrees temàtiques de la UPC]Muonnumerical [Methods]010308 nuclear & particles physicsneutrinosAstronomy and Astrophysicsgeneral [Gamma-ray burst]neutrinos - gamma-ray burst: general - methods: numerical; methods: numerical; neutrinos; gamma-ray burst: generalHigh Energy Physics - PhenomenologyGamma-ray burst: general; Methods: numerical; NeutrinosNeutrino detectorSpace and Planetary ScienceFISICA APLICADAFísica nuclearHigh Energy Physics::ExperimentNeutrinoneutrinos - gamma-ray burst: general - methods: numericalGamma-ray burstAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

The Basics of Nuclear Chemistry and Radiochemistry: An Introduction to Nuclear Transformations and Radioactive Emissions

2019

Radiopharmaceutical chemistry and nuclear medicine make use of radioactive elements and compounds labeled with them. This chapter describes the fundamentals of radioactivity in the context of life sciences. It addresses principal questions such as: What is the composition of an atomic nucleus and what are the forces which hold nucleons bound within the nucleus? Even so, some nuclei are stable, and many others are not—why? The fate of unstable nuclei is transforming into more stable nucleon configurations—but what are the basic pathways to do so? What’s going on inside the nucleus? What are the energetics and velocities of these transformations? And finally, the various changes inside the nu…

Astrophysics::High Energy Astrophysical PhenomenaNuclear TheoryElectron shellContext (language use)Alpha particleNuclear physicsmedicine.anatomical_structureSemi-empirical mass formulaAtomic nucleusmedicineNuclear ExperimentNucleonNucleusRadioactive decay
researchProduct

Charged-current neutrino-nucleus scattering off 95,97^Mo

2013

Background: Reliable cross sections for the neutrino-nucleus scattering off relevant nuclei for supernova neutrinos are essential for various applications in neutrino physics and astrophysics (e.g., supernova mechanisms). Studies of the nuclear responses for the stable molybdenum isotopes are of great interest for the planned MOON (Mo Observatory of Neutrinos) experiment. Purpose: The purpose of the present work is, thus, to perform a detailed study of the charged-current nuclear responses to supernova neutrinos for the stable odd molybdenum isotopes. A special effort will be devoted to discuss in detail the structures of the most relevant final states in the corresponding proton-odd nucleu…

Astrophysics::High Energy Astrophysical PhenomenaNuclear Theorytheoretical nuclear physicsteoreettinen ydinfysiikkaHigh Energy Physics::ExperimentNuclear Experiment
researchProduct

Neutron transmission measurements at nELBE

2020

International Conference on Nuclear Data for Science and Technology, ND 2019, Bejing, China, 19 May 2019 - 24 May 2019; The European physical journal / Web of Conferences 239, 01006 (2020). doi:10.1051/epjconf/202023901006

Astrophysics::High Energy Astrophysical PhenomenaQC1-999FluxNeutron transmission53001 natural sciences238UNuclear physicsXe0103 physical sciencesNeutronddc:530High pressure gas010306 general physicsPhysicsHe010308 nuclear & particles physicsNePhysicsOPtnELBE time of flight faciltiyneutron total cross sectionstransmission measurementNatBar (unit)
researchProduct

Measurement of day and night neutrino energy spectra at SNO and constraints on neutrino mixing parameters

2002

The Sudbury Neutrino Observatory (SNO) has measured day and night solar neutrino energy spectra and rates. For charged current events, assuming an undistorted $^8$B spectrum, the night minus day rate is $14.0% \pm 6.3% ^{+1.5}_{-1.4}%$ of the average rate. If the total flux of active neutrinos is additionally constrained to have no asymmetry, the $\nu_e$ asymmetry is found to be $7.0% \pm 4.9% ^{+1.3}_{-1.2}%$. A global solar neutrino analysis in terms of matter-enhanced oscillations of two active flavors strongly favors the Large Mixing Angle (LMA) solution.

Astrophysics::High Energy Astrophysical PhenomenaSolar neutrinoFOS: Physical sciencesGeneral Physics and AstronomyFluxCosmic rayAstrophysics7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesNuclear astrophysicsNuclear Experiment (nucl-ex)010306 general physicsNeutrino oscillationNuclear ExperimentAstrophysics::Galaxy AstrophysicsCharged currentPhysicsSudbury Neutrino Observatory010308 nuclear & particles physicsAstrophysics (astro-ph)High Energy Physics::Phenomenology13. Climate actionHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary AstrophysicsNeutrino
researchProduct

Comparison of gamma-ray coincidence and low-background gamma-ray singles spectrometry

2011

Aerosol samples have been studied under different background conditions using gamma-ray coincidence and low-background gamma-ray singles spectrometric techniques with High-Purity Germanium detectors. Conventional low-background gamma-ray singles counting is a competitive technique when compared to the gamma-gamma coincidence approach in elevated background conditions. However, measurement of gamma-gamma coincidences can clearly make the identification of different nuclides more reliable and efficient than using singles spectrometry alone. The optimum solution would be a low-background counting station capable of both singles and gamma-gamma coincidence spectrometry.

Astrophysics::High Energy Astrophysical Phenomena[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]010403 inorganic & nuclear chemistryMass spectrometry01 natural sciencesComprehensive Nuclear-Test-Ban TreatyCoincidence030218 nuclear medicine & medical imagingNuclear physics03 medical and health sciences0302 clinical medicineBackground RadiationAir Pollution RadioactiveNuclideGamma ray spectrometryBackground radiationNuclear PhysicsPhysicsAerosolsRadiation surveillanceRadiationta114GermaniumGamma rayGamma-ray spectrometry0104 chemical sciencesSpectrometry GammaGamma Rays22Na
researchProduct

Search for microscopic black holes in a like-sign dimuon final state using large track multiplicity with the ATLAS detector

2013

A search is presented for microscopic black holes in a like-sign dimuon final state in proton-proton collisions at √s= 8 TeV. The data were collected with the ATLAS detector at the Large Hadron Collider in 2012 and correspond to an integrated luminosity of 20.3 fb-1. Using a high track multiplicity requirement, 0.6±0.2 background events from Standard Model processes are predicted and none observed. This result is interpreted in the context of low-scale gravity models and 95% CL lower limits on microscopic black hole masses are set for different model assumptions.

Atlas detectorCiencias FísicasNuclear TheoryHadronDimensions01 natural sciencesHigh Energy Physics - Experiment//purl.org/becyt/ford/1 [https]High Energy Physics - Experiment (hep-ex)Micro black hole[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]QANuclear ExperimentGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)QCPhysicsLarge Hadron ColliderLARGE EXTRA DIMENSIONSSettore FIS/01 - Fisica Sperimentaleblack holes; ATLAS detector; microscopicATLASPhysical SciencesLHCParticle Physics - ExperimentCIENCIAS NATURALES Y EXACTASNuclear and High Energy PhysicsParticle physicsCiências Naturais::Ciências Físicas530 PhysicsAstrophysics::High Energy Astrophysical Phenomena:Ciências Físicas [Ciências Naturais]FOS: Physical sciencesddc:500.2530Nuclear physics0103 physical sciencesFysikddc:530High Energy PhysicsMultiplicity (chemistry)010306 general physicsCiencias ExactasScience & TechnologyATLAS detector010308 nuclear & particles physicsMillimeterFísica//purl.org/becyt/ford/1.3 [https]black holesAstronomíaBlack holeHADRON-HADRON COLLISIONSExperimental High Energy PhysicsTevPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentGravity SignaturesPHYSICAL REVIEW D
researchProduct

Charged-particle multiplicities in pp interactions measured with the ATLAS detector at the LHC

2011

Measurements are presented from proton–proton collisions at centre-of-mass energies of \sqrt{s} = 0.9 , 2.36 and 7 TeV recorded with the ATLAS detector at the LHC. Events were collected using a single-arm minimum-bias trigger. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the relationship between the mean transverse momentum and charged-particle multiplicity are measured. Measurements in different regions of phase space are shown, providing diffraction-reduced measurements as well as more inclusive ones. The observed distributions are corrected to well-defined phase-space regions, using model-independent corrections. The results are compared…

Atlas detectorMonte Carlo methodLarge hadron colliderNuclear physicsGeneral Physics and Astronomy01 natural sciencesTransverse-Momentum SpectraHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Pseudorapidity[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]CollisionsQANuclear ExperimentTransverse momentumQCPhysicsLarge Hadron ColliderPhysicsSettore FIS/01 - Fisica SperimentaleParticle physicsATLAS detector; LHC; pp collisionsATLASSquare-Root-SMonte carlo methodCharged particle3. Good healthPseudorapidityddc:540ComputingMethodologies_DOCUMENTANDTEXTPROCESSINGTsallis distributionFísica nuclearDistributionsLHCpp collisionsParticle Physics - ExperimentParticle physicsCiências Naturais::Ciências FísicasAtlas detector:Ciências Físicas [Ciências Naturais]FOS: Physical sciencesCharged particleInclusive production with identified hadronsPhase spaceddc:500.2530Nuclear physics0103 physical sciencesddc:530High Energy Physics010306 general physicsATLAS detector010308 nuclear & particles physicsFísicaMultiplicity (mathematics)Perturbative calculationsMultiplicity (mathematics)pp interactions; LHC; ATLAS detectorPhase spaceHADRON-HADRON COLLISIONSExperimental High Energy PhysicsCM EnergiesTevHigh Energy Physics::ExperimentCollider
researchProduct