Search results for "Nucleobase"

showing 10 items of 69 documents

How Proximal Nucleobases Regulate the Catalytic Activity of G-Quadruplex/Hemin DNAzymes

2018

International audience; G-quadruplexes (G4s) are versatile catalytic DNAs when combined with hemin. Despite the repertoire of catalytically competent G4/hemin complexes studied so far, little is known about the detailed catalytic mechanism of these biocatalysts. Herein, we have carried out an in-depth analysis of the hemin binding site within the G4/hemin catalysts, providing the porphyrinic cofactor with a controlled nucleotidic environment. We intensively assessed the position-dependent catalytic enhancement in model reactions and found that proximal nucleobases enhance the catalytic ability of the G4/hemin complexes. Our results allow for revisiting the mechanism of the G4/hemin-based ca…

G4-based catalystDNAzymeproximal nucleobasesDeoxyribozyme010402 general chemistryG-quadruplex01 natural sciencesCatalysisCofactorCatalysisNucleobasechemistry.chemical_compoundG4/hemin complexpolycyclic compoundsNucleotideheterocyclic compoundsBinding sitechemistry.chemical_classificationbiology010405 organic chemistryG-quartetGeneral Chemistry[CHIM.CATA]Chemical Sciences/Catalysisequipment and suppliesCombinatorial chemistry0104 chemical scienceschemistrybiology.proteinHemin
researchProduct

Molecular recognition of nucleotides in water by scorpiand-type receptors based on nucleobase discrimination.

2014

Abstract: The detection of nucleotides is of crucial impor-tance because they are the basic building blocks of nucleicacids. Scorpiand-based polyamine receptors functionalizedwith pyridine or anthracene units are able to form stablecomplexes with nucleotides in water, based on coulombic,p–p stacking, and hydrogen-bonding interactions. This be-havior has been rationalized by means of an explorationwith NMR spectroscopy and DFT calculations. Binding con-stants were determined by potentiometry. Fluorescencespectroscopy studies have revealed the potential of these re-ceptors as sensors to effectively and selectively distinguishguanosine-5’-triphosphate (GTP) from adenosine-5’-triphos-phate (ATP…

GTP'StereochemistryStackingSupramolecular chemistrysensorsCatalysissupramolecular chemistryNucleobaseMolecular recognitionAdenosine TriphosphateMoleculeNucleotidescorpiandsNuclear Magnetic Resonance Biomolecularchemistry.chemical_classificationMolecular StructureNucleotidesOrganic ChemistryWaterHydrogen BondingGeneral ChemistryNuclear magnetic resonance spectroscopyModels TheoreticalSpectrometry Fluorescencechemistrymolecular recognitionGuanosine TriphosphateChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct

Ab initio determination of the electron affinities of DNA and RNA nucleobases

2008

High-level quantum-chemical ab initio coupled-cluster and multiconfigurational perturbation methods have been used to compute the vertical and adiabatic electron affinities of the five canonical DNA and RNA nucleobases: uracil, thymine, cytosine, adenine, and guanine. The present results aim for the accurate determination of the intrinsic electron acceptor properties of the isolated nucleic acid bases as described by their electron affinities, establishing an overall set of theoretical reference values at a level not reported before and helping to rule out less reliable theoretical and experimental data and to calibrate theoretical strategies. Daniel.Roca@uv.es Manuela.Merchan@uv.es Luis.Se…

GuanineAb initioGeneral Physics and AstronomyElectronsAb initio calculations ; Coupled cluster calculations ; DNA ; Electron affinity ; Macromolecules ; Molecular biophysics ; Perturbation theoryPerturbation theoryNucleobasechemistry.chemical_compoundCoupled cluster calculationsComputational chemistryAb initio quantum chemistry methodsComputer SimulationPhysical and Theoretical Chemistry:FÍSICA::Química física [UNESCO]Physics::Biological PhysicsQuantitative Biology::BiomoleculesChemistryUracilDNAMolecular biophysicsQuantitative Biology::GenomicsUNESCO::FÍSICA::Química físicaThymineElectron affinityModels ChemicalMacromoleculesNucleic Acid ConformationQuantum TheoryRNAAb initio calculationsCytosineDNAThe Journal of Chemical Physics
researchProduct

First-principles characterization of the singlet excited state manifold in DNA/RNA nucleobases

2020

An extensive theoretical characterization of the singlet excited state manifold of the five canonical DNA/RNA nucleobases (thymine, cytosine, uracil, adenine and guanine) in gas-phase is carried out with time-dependent density functional theory (TD-DFT) and restricted active space second-order perturbation theory (RASPT2) approaches. Both ground state and excited state absorptions are analyzed and compared between these different theoretical approaches, assessing the performance of the hybrid B3LYP and CAM-B3LYP (long-range corrected) functionals with respect to the RASPT2 reference. By comparing the TD-DFT estimates with our reference for high-lying excited states, we are able to narrow do…

GuanineGuanineGeneral Physics and Astronomy010402 general chemistry01 natural sciencesMolecular physicsNucleobasechemistry.chemical_compoundCytosine0103 physical sciencesSinglet statePhysical and Theoretical ChemistryPerturbation theoryUracilDensity Functional TheoryPhysics010304 chemical physicsAdenineDNA0104 chemical sciencesThyminechemistryExcited stateRNADensity functional theoryGround stateThyminePhysical Chemistry Chemical Physics
researchProduct

Are the five natural DNA/RNA base monomers a good choice from natural selection?

2009

In order to prevent the damaging effects of sun radiation in the genetic material, its constituent chromophores, the five natural DNA/RNA nucleobases cytosine, thymine, uracil, adenine, and guanine, should be able to efficiently dissipate absorbed radiation, UV specifically, avoiding as much as possible photoreactions leading to lesions. It has been established experimentally and theoretically that efficient internal conversion channels, still open and relevant in the oligomer-stacked strands, exist in the monomers allowing an effective waste of the initial energy. Previous evidences cannot explain, however, why minor differences in the molecular structure modify drastically the photochemis…

GuanineOrganic ChemistryUracilConical intersectionInternal conversion (chemistry)PhotochemistryCatalysisThymineNucleobasechemistry.chemical_compoundchemistryExcited statePhysical and Theoretical ChemistryCytosineJournal of Photochemistry and Photobiology C: Photochemistry Reviews
researchProduct

Modelling Photoionisations in Tautomeric DNA Nucleobase Derivatives 7H-Adenine and 7H-Guanine: Ultrafast Decay and Photostability

2021

The study of radiation effects in DNA is a multidisciplinary endeavour, connecting the physical, chemical and biological sciences. Despite being mostly filtered by the ozone layer, sunlight radiation is still expected to (photo)ionise DNA in sizeable yields, triggering an electron removal process and the formation of potentially reactive cationic species. In this manuscript, photoionisation decay channels of important DNA tautomeric derivatives, 7H-adenine and 7H-guanine, are characterised with accurate CASSCF/XMS-CASPT2 theoretical methods. These simulation techniques place the onset of ionisation for 7H-adenine and 7H-guanine on average at 8.98 and 8.43 eV, in line with recorded experimen…

Guaninephotoionisation010402 general chemistryPhotochemistryphotostability01 natural sciencesNucleobasechemistry.chemical_compoundUltraviolet visible spectroscopy0103 physical sciencesUV/Vis spectroscopyexcited states010304 chemical physicsconical intersectionsCationic polymerizationionisation potentialsEspectroscòpia infrarojaQuímicaConical intersectionTautomer0104 chemical scienceschemistryExcited stateCASSCF/CASPT2DNA/RNAGround statePhotochem
researchProduct

ChemInform Abstract: Excitation of Nucleobases from a Computational Perspective I: Reaction Paths

2016

The main intrinsic photochemical events in nucleobases can be described on theoretical grounds within the realm of non-adiabatic computational photochemistry. From a static standpoint, the photochemical reaction path approach (PRPA), through the computation of the respective minimum energy path (MEP), can be regarded as the most suitable strategy in order to explore the electronically excited isolated nucleobases. Unfortunately, the PRPA does not appear widely in the studies reported in the last decade. The main ultrafast decay observed experimentally for the gas-phase excited nucleobases is related to the computed barrierless MEPs from the bright excited state connecting the initial Franck…

HypersurfaceChemistryExcited stateComputationGeneral MedicineConical intersectionInternal conversion (chemistry)Ground stateMolecular physicsExcitationNucleobaseChemInform
researchProduct

Hydrogen abstraction by photoexcited benzophenone: consequences for DNA photosensitization

2016

International audience; We report a computational investigation of the hydrogen abstraction (H-abstraction) induced by triplet benzophenone (3BP) on thymine nucleobase and backbone sugar. The chemical process is studied using both high level multiconfigurational perturbation and density functional theory. Both methods show good agreement in predicting small kinetic barriers. Furthermore the behavior of benzophenone in DNA is simulated using molecular dynamics and hybrid quantum mechanics/molecular mechanics methods. The accessibility of benzophenone to the labile hydrogens within B-DNA is demonstrated, as well as the driving force for this reaction. We evidence a strong dependence of the H-…

LightHydrogenGeneral Physics and Astronomychemistry.chemical_element02 engineering and technologyMolecular Dynamics Simulation010402 general chemistryPhotochemistryHydrogen atom abstraction01 natural sciencesMolecular mechanicsNucleobaseBenzophenoneschemistry.chemical_compoundMolecular dynamicsComputational chemistryBenzophenoneComputer Simulation[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyPhysical and Theoretical ChemistryDNA021001 nanoscience & nanotechnology[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation0104 chemical sciencesThyminechemistryDensity functional theory0210 nano-technologyHydrogen
researchProduct

Model building and molecular mechanics calculations of mitoxantrone-deoxytetranucleotide complexes: Molecular foundations of DNA intercalation as cyt…

1996

Several intercalation complexes of the antitumor-active drug mitoxantrone with base paired tetranucleotides were constructed by molecular modeling using computer graphics and molecular mechanics calculations. The mitoxantrone molecule favours DNA binding into CG intercalation site. The two side chains of the drug are orientated into the major groove and fixed by hydrogen bonds with the nucleotide bases. This molecular study can be helpful for understanding the mode of action of cytostatically active compounds and to design new structurally related compounds of the anthraquinone drug type.

MitoxantroneMolecular modelChemistryStereochemistryHydrogen bondIntercalation (chemistry)General ChemistryMolecular mechanicsNucleobaseDNA IntercalationComputational chemistrymedicineMoleculemedicine.drugMonatshefte f�r Chemie Chemical Monthly
researchProduct

Intercalation of daunomycin into stacked DNA base pairs. DFT study of an anticancer drug

2008

We have computationally studied the intercalation of the antitumor drug daunomycin into six stacks of Watson-Crick DNA base pairs i.e., AT-AT, AT-TA, GC-AT, CG-TA, GC-GC, GC-CG) using density functional theory (DFT). The proton affinity of the DNA intercalater daunomycin in water was computed to be 159.2 kcal/mol at BP86/TZ2P, which is in line with the experimental observation that daunomycin is protonated under physiological conditions. The intercalation interaction of protonated daunomycin with two stacked DNA base pairs was studied through a hybrid approach in which intercalation is treated at LDA/TZP while the molecular structure of daunomycin and hydrogen-bonded Watson-Crick pairs is c…

Models MolecularBase pairStereochemistryIntercalation (chemistry)Stacking/dk/atira/pure/sustainabledevelopmentgoals/clean_water_and_sanitationNucleobaseSDG 3 - Good Health and Well-beingStructural BiologyIntercalationMoleculeBase PairingMolecular BiologyAntibiotics AntineoplasticHydrogen bondChemistryDaunorubicinWaterHydrogen BondingDaunomycinDNAGeneral MedicineStacking interactionsSettore CHIM/08 - Chimica FarmaceuticaIntercalating AgentsNucleobaseCrystallographyModels ChemicalSettore CHIM/03 - Chimica Generale E Inorganica/dk/atira/pure/sustainabledevelopmentgoals/good_health_and_well_beingNucleic Acid ConformationThermodynamicsProton affinityDensity functional theoryBond energyDensity functional calculationSDG 6 - Clean Water and Sanitation
researchProduct