Search results for "Nucleosynthesis"
showing 10 items of 141 documents
The Cosmological Evolution of Light Dark Photon Dark Matter
2020
Light dark photons are subject to various plasma effects, such as Debye screening and resonant oscillations, which can lead to a more complex cosmological evolution than is experienced by conventional cold dark matter candidates. Maintaining a consistent history of dark photon dark matter requires ensuring that the super-thermal abundance present in the early Universe $\textit{(i)}$ does not deviate significantly after the formation of the CMB, and $\textit{(ii)}$ does not excessively leak into the Standard Model plasma after BBN. We point out that the role of non-resonant absorption, which has previously been neglected in cosmological studies of this dark matter candidate, produces strong …
Titanium hidden in dust
2019
Cassiopeia A, one of the most intriguing galactic supernova remnants, has been a target of many observational efforts including most recent observations by ALMA, Hubble, Herschel, Spitzer, NuSTAR, Integral, and other observatories. We use recent gamma-ray lines observations of the radioactive products of Cas A supernova explosive nucleosynthesis as well as spectral energy densities derived for Cas A at infrared wavelengths to speculate about the possibility of radioactive 44Ti being locked into large dust grains. This suggestion is also supported by the possible observation of a pre-supernova outburst about 80 years before the actual Cas A supernova explosion in 1671 AD by Italian astronome…
The role of weak interactions in dynamic ejecta from binary neutron star mergers
2017
Weak reactions are critical for the neutron richness of the matter dynamically ejected after the merger of two neutron stars. The neutron richness, defined by the electron fraction (Ye), determines which heavy elements are produced by the r-process and thus directly impacts the kilonova light curve. In this work, we have performed a systematic and detailed post-processing study of the impact of weak reactions on the distribution of the electron fraction and of the entropy on the dynamic ejecta obtained from an equal mass neutron star binary merger simulated in full general relativity and with microscopic equation of state. Previous investigations indicated that shocks increase Ye, however o…
Precision mass measurements for nuclear astro- and neutrino physics
2012
Nuclear masses are indispensable ingredients in numerous physics applications ranging from nuclear structure physics, where, e.g., the shell closures and nucleon correlation energies can be studied by accurate mass measurements, via the nuclear astrophysics, where the masses of nuclei far from the valley of β-stability determine the pathways of, e.g., rp-and r-processes of nucleosynthesis in stars, to tests of the standard model and fundamental interactions, where, e.g., the very-accurate masses of parent and superallowed β-decay daughter nuclei serve as one of inputs for the checking of the unitarity of the CKM quark-mixing matrix. In this review we focus on recent direct mass measurements…
Measurement of the92,93,94,100Mo(γ,n) reactions by Coulomb Dissociation
2016
6th Nuclear Physics in Astrophysics Conference (NPA), Lisbon, Portugal, 19 May 2013 - 24 May 2013; Journal of physics / Conference Series 665, 012034 (2016). doi:10.1088/1742-6596/665/1/012034
Mass Measurements of Very Neutron-Deficient Mo and Tc Isotopes and Their Impact on rp Process Nucleosynthesis
2011
The masses of ten proton-rich nuclides, including the N=Z+1 nuclides 85-Mo and 87-Tc, were measured with the Penning trap mass spectrometer SHIPTRAP. Compared to the Atomic Mass Evaluation 2003 a systematic shift of the mass surface by up to 1.6 MeV is observed causing significant abundance changes of the ashes of astrophysical X-ray bursts. Surprisingly low alpha-separation energies for neutron-deficient Mo and Tc are found, making the formation of a ZrNb cycle in the rp process possible. Such a cycle would impose an upper temperature limit for the synthesis of elements beyond Nb in the rp process.
First Measurement of Severalβ-Delayed Neutron Emitting Isotopes BeyondN=126
2016
The β-delayed neutron emission probabilities of neutron rich Hg and Tl nuclei have been measured together with β-decay half-lives for 20 isotopes of Au, Hg, Tl, Pb, and Bi in the mass region N≳126. These are the heaviest species where neutron emission has been observed so far. These measurements provide key information to evaluate the performance of nuclear microscopic and phenomenological models in reproducing the high-energy part of the β-decay strength distribution. This provides important constraints on global theoretical models currently used in r-process nucleosynthesis.
Half-Life Systematics across theN=126Shell Closure: Role of First-Forbidden Transitions in theβDecay of Heavy Neutron-Rich Nuclei
2014
This Letter reports on a systematic study of β-decay half-lives of neutron-rich nuclei around doubly magic Pb208. The lifetimes of the 126-neutron shell isotone Pt204 and the neighboring Ir200-202, Pt203, Au204 are presented together with other 19 half-lives measured during the "stopped beam" campaign of the rare isotope investigations at GSI collaboration. The results constrain the main nuclear theories used in calculations of r-process nucleosynthesis. Predictions based on a statistical macroscopic description of the first-forbidden β strength reveal significant deviations for most of the nuclei with N<126. In contrast, theories including a fully microscopic treatment of allowed and first…
Interpretation of the SolarCa48/Ca46Abundance Ratio and the Correlated Ca-Ti Isotopic Anomalies in the EK-1-4-1 Inclusion of the Allende Meteorite
1985
$\ensuremath{\beta}$-delayed neutron-emission probabilities of neutron-rich S to K isotopes are calculated with nuclear-structure effects taken into account. These results strongly affect predictions made in high-neutron-density astrophysical scenarios for isotopic abundances of several elements. In particular, it is demonstrated that the solar abundance ratio $^{48}\mathrm{Ca}$/$^{46}\mathrm{Ca}$ as well as the correlated Ca and Ti isotopic anomalies can be explained by the same nucleosynthesis process.
The X‐ray emission of the supernova remnant W49B: indications of a jet‐like explosion
2007
We report on an XMM-Newton EPIC observation of the galactic supernova remnant W49B, which, on the basis of previous Chandra observations, has been supposed to be the first remnant of a gamma-ray burst discovered in our galaxy. We performed a spatially resolved spectral analysis, which revealed oversolar abundances of Si, S, Ar, Ca, and Fe. Moreover, a high overabundance of Ni is required in the bright central elongated region. Our results support a scenario where the remnant was generated by an asymmetric bipolar explosion where the eastern jet is hotter and more Fe-rich than the western one. An alternative interpretation which associates the X-ray emission with spherically symmetric ejecta…