Search results for "Nucleosynthesis"

showing 10 items of 141 documents

The Cosmological Evolution of Light Dark Photon Dark Matter

2020

Light dark photons are subject to various plasma effects, such as Debye screening and resonant oscillations, which can lead to a more complex cosmological evolution than is experienced by conventional cold dark matter candidates. Maintaining a consistent history of dark photon dark matter requires ensuring that the super-thermal abundance present in the early Universe $\textit{(i)}$ does not deviate significantly after the formation of the CMB, and $\textit{(ii)}$ does not excessively leak into the Standard Model plasma after BBN. We point out that the role of non-resonant absorption, which has previously been neglected in cosmological studies of this dark matter candidate, produces strong …

PhysicsCold dark matterCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsmedia_common.quotation_subjectDark matterCosmic microwave backgroundFOS: Physical sciencesAstrophysicsPlasmaAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesUniverseDark photonHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)13. Climate actionNucleosynthesis0103 physical sciencesOptical depth (astrophysics)010306 general physicsmedia_commonAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Titanium hidden in dust

2019

Cassiopeia A, one of the most intriguing galactic supernova remnants, has been a target of many observational efforts including most recent observations by ALMA, Hubble, Herschel, Spitzer, NuSTAR, Integral, and other observatories. We use recent gamma-ray lines observations of the radioactive products of Cas A supernova explosive nucleosynthesis as well as spectral energy densities derived for Cas A at infrared wavelengths to speculate about the possibility of radioactive 44Ti being locked into large dust grains. This suggestion is also supported by the possible observation of a pre-supernova outburst about 80 years before the actual Cas A supernova explosion in 1671 AD by Italian astronome…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsInfraredAstrophysics::High Energy Astrophysical PhenomenaExtinction (astronomy)AstronomyFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesGalaxySupernovaSpace and Planetary ScienceNucleosynthesis0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics
researchProduct

The role of weak interactions in dynamic ejecta from binary neutron star mergers

2017

Weak reactions are critical for the neutron richness of the matter dynamically ejected after the merger of two neutron stars. The neutron richness, defined by the electron fraction (Ye), determines which heavy elements are produced by the r-process and thus directly impacts the kilonova light curve. In this work, we have performed a systematic and detailed post-processing study of the impact of weak reactions on the distribution of the electron fraction and of the entropy on the dynamic ejecta obtained from an equal mass neutron star binary merger simulated in full general relativity and with microscopic equation of state. Previous investigations indicated that shocks increase Ye, however o…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics and Astronomy (miscellaneous)010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsWeak interactionKilonovaLight curve7. Clean energy01 natural sciencesNeutron starNucleosynthesis0103 physical sciencesNeutronNeutrinoAstrophysics - High Energy Astrophysical PhenomenaEjecta010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics
researchProduct

Precision mass measurements for nuclear astro- and neutrino physics

2012

Nuclear masses are indispensable ingredients in numerous physics applications ranging from nuclear structure physics, where, e.g., the shell closures and nucleon correlation energies can be studied by accurate mass measurements, via the nuclear astrophysics, where the masses of nuclei far from the valley of β-stability determine the pathways of, e.g., rp-and r-processes of nucleosynthesis in stars, to tests of the standard model and fundamental interactions, where, e.g., the very-accurate masses of parent and superallowed β-decay daughter nuclei serve as one of inputs for the checking of the unitarity of the CKM quark-mixing matrix. In this review we focus on recent direct mass measurements…

PhysicsHistoryParticle physicsUnitarityNuclear TheoryNuclear structurePenning trapComputer Science ApplicationsEducationStandard ModelNuclear physicsNucleosynthesisNuclear astrophysicsNeutrinoNuclear ExperimentNucleonJournal of Physics: Conference Series
researchProduct

Measurement of the92,93,94,100Mo(γ,n) reactions by Coulomb Dissociation

2016

6th Nuclear Physics in Astrophysics Conference (NPA), Lisbon, Portugal, 19 May 2013 - 24 May 2013; Journal of physics / Conference Series 665, 012034 (2016). doi:10.1088/1742-6596/665/1/012034

PhysicsHistoryPhoton010504 meteorology & atmospheric sciencesIsotopeStable isotope ratiochemistry.chemical_element53001 natural sciencesDissociation (chemistry)Computer Science ApplicationsEducationNuclear physicschemistryNucleosynthesisMolybdenum0103 physical sciencesCoulombddc:530Atomic physics010303 astronomy & astrophysicsProduction chain0105 earth and related environmental sciencesJournal of Physics: Conference Series
researchProduct

Mass Measurements of Very Neutron-Deficient Mo and Tc Isotopes and Their Impact on rp Process Nucleosynthesis

2011

The masses of ten proton-rich nuclides, including the N=Z+1 nuclides 85-Mo and 87-Tc, were measured with the Penning trap mass spectrometer SHIPTRAP. Compared to the Atomic Mass Evaluation 2003 a systematic shift of the mass surface by up to 1.6 MeV is observed causing significant abundance changes of the ashes of astrophysical X-ray bursts. Surprisingly low alpha-separation energies for neutron-deficient Mo and Tc are found, making the formation of a ZrNb cycle in the rp process possible. Such a cycle would impose an upper temperature limit for the synthesis of elements beyond Nb in the rp process.

PhysicsIsotope010308 nuclear & particles physicsGeneral Physics and AstronomyFOS: Physical sciencesrp-process[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Penning trapMass spectrometry7. Clean energy01 natural sciencesAtomic massNuclear physics13. Climate actionNucleosynthesis0103 physical sciencesNeutronNuclideNuclear Experiment (nucl-ex)010306 general physicsNuclear Experiment
researchProduct

First Measurement of Severalβ-Delayed Neutron Emitting Isotopes BeyondN=126

2016

The β-delayed neutron emission probabilities of neutron rich Hg and Tl nuclei have been measured together with β-decay half-lives for 20 isotopes of Au, Hg, Tl, Pb, and Bi in the mass region N≳126. These are the heaviest species where neutron emission has been observed so far. These measurements provide key information to evaluate the performance of nuclear microscopic and phenomenological models in reproducing the high-energy part of the β-decay strength distribution. This provides important constraints on global theoretical models currently used in r-process nucleosynthesis.

PhysicsIsotope010308 nuclear & particles physicsNeutron emissionAstrophysics::High Energy Astrophysical PhenomenaNuclear TheoryGeneral Physics and Astronomy01 natural sciencesMass formulaNuclear physics13. Climate actionNucleosynthesis0103 physical sciencesr-processNeutronNuclear Experiment010306 general physicss-processDelayed neutronPhysical Review Letters
researchProduct

Half-Life Systematics across theN=126Shell Closure: Role of First-Forbidden Transitions in theβDecay of Heavy Neutron-Rich Nuclei

2014

This Letter reports on a systematic study of β-decay half-lives of neutron-rich nuclei around doubly magic Pb208. The lifetimes of the 126-neutron shell isotone Pt204 and the neighboring Ir200-202, Pt203, Au204 are presented together with other 19 half-lives measured during the "stopped beam" campaign of the rare isotope investigations at GSI collaboration. The results constrain the main nuclear theories used in calculations of r-process nucleosynthesis. Predictions based on a statistical macroscopic description of the first-forbidden β strength reveal significant deviations for most of the nuclei with N<126. In contrast, theories including a fully microscopic treatment of allowed and first…

PhysicsIsotopeIsotoneNuclear TheoryGeneral Physics and AstronomyBeta decayNuclear physicsNucleosynthesisDouble beta decayr-processNeutronAtomic physicsNuclear ExperimentSpectroscopyPhysical Review Letters
researchProduct

Interpretation of the SolarCa48/Ca46Abundance Ratio and the Correlated Ca-Ti Isotopic Anomalies in the EK-1-4-1 Inclusion of the Allende Meteorite

1985

$\ensuremath{\beta}$-delayed neutron-emission probabilities of neutron-rich S to K isotopes are calculated with nuclear-structure effects taken into account. These results strongly affect predictions made in high-neutron-density astrophysical scenarios for isotopic abundances of several elements. In particular, it is demonstrated that the solar abundance ratio $^{48}\mathrm{Ca}$/$^{46}\mathrm{Ca}$ as well as the correlated Ca and Ti isotopic anomalies can be explained by the same nucleosynthesis process.

PhysicsIsotopeNeutron emissionAstrophysics::High Energy Astrophysical PhenomenaNuclear structureGeneral Physics and AstronomyAstrophysicsAstrobiologyAllende meteoriteNucleosynthesisAbundance (ecology)Kinetic isotope effectAstrophysics::Solar and Stellar AstrophysicsNuclideNuclear ExperimentAstrophysics::Galaxy AstrophysicsPhysical Review Letters
researchProduct

The X‐ray emission of the supernova remnant W49B: indications of a jet‐like explosion

2007

We report on an XMM-Newton EPIC observation of the galactic supernova remnant W49B, which, on the basis of previous Chandra observations, has been supposed to be the first remnant of a gamma-ray burst discovered in our galaxy. We performed a spatially resolved spectral analysis, which revealed oversolar abundances of Si, S, Ar, Ca, and Fe. Moreover, a high overabundance of Ni is required in the bright central elongated region. Our results support a scenario where the remnant was generated by an asymmetric bipolar explosion where the eastern jet is hotter and more Fe-rich than the western one. An alternative interpretation which associates the X-ray emission with spherically symmetric ejecta…

PhysicsJet (fluid)Astrophysics::High Energy Astrophysical PhenomenaAstronomyAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsNear-Earth supernovaGalaxySupernovaNucleosynthesisX-ray burstsSupernova remnants X-ray sourceAstrophysics::Solar and Stellar AstrophysicsEjectaSupernova remnantHypernovaAstrophysics::Galaxy AstrophysicsAIP Conference Proceedings
researchProduct