Search results for "Nutrient"

showing 10 items of 668 documents

Modelling the Effects of Climate Change on the Supply of Inorganic Nitrogen

2009

Human-induced changes in the nitrogen cycle due to the increased use of artificial fertilisers, the cultivation of nitrogen-fixing crops and atmospheric deposition have made nitrogen pollution to surface waters a long-standing cause for concern. In Europe, legislation has been introduced to minimise the risk of water quality degradation from excessive nitrogen inputs e.g., the European Union Nitrates Directive (EU, 1991), Drinking Water Directive (EU, 1998) and Water Framework Directive (EU, 2000). Coastal regions in particular have been an important focus, since coastal eutrophication has been attributed to increased fluxes of nitrogen from the landscape (Howarth et al., 1996; Boesch et al…

010504 meteorology & atmospheric sciencesEcology0207 environmental engineering02 engineering and technology15. Life on land01 natural sciences6. Clean waterMacrophyteWater Framework Directive13. Climate actionEnvironmental protectionNutrient pollutionDrinking water directiveEnvironmental sciencemedia_common.cataloged_instance14. Life underwaterWater qualityEuropean union020701 environmental engineeringEutrophicationNitrogen cycle0105 earth and related environmental sciencesmedia_common
researchProduct

2021

Abstract Contaminated soils are lands in Europe deemed less favourable for conventional agriculture. To overcome the problem of their poor fertility, bio-fertilization could be a promising approach. Soil inoculation with a choice of biological species (e.g. earthworm, mycorrhizal fungi, diazotroph bacteria) can be performed in order to improve soil properties and promote nutrients recycling. However, questions arise concerning the dynamics of the contaminants in an inoculated soil. The aim of this study was to highlight the soil-plant-earthworm interactions in the case of a slightly contaminated soil. For this purpose, a pot experiment in controlled conditions was carried out during 2 month…

010504 meteorology & atmospheric sciencesHealth Toxicology and MutagenesisBiomass010501 environmental sciencesToxicologycomplex mixtures01 natural sciencesNutrient0105 earth and related environmental sciences2. Zero hungerbiologyChemistryEarthwormTrace elementfood and beveragesGeneral Medicine15. Life on landbiology.organism_classificationPollutionSoil contamination6. Clean waterBioavailability13. Climate actionEnvironmental chemistryBioaccumulationSoil waterEnvironmental Pollution
researchProduct

An assessment of the global impact of 21st century land use change on soil erosion

2017

Human activity and related land use change are the primary cause of accelerated soil erosion, which has substantial implications for nutrient and carbon cycling, land productivity and in turn, worldwide socio-economic conditions. Here we present an unprecedentedly high resolution (250 × 250 m) global potential soil erosion model, using a combination of remote sensing, GIS modelling and census data. We challenge the previous annual soil erosion reference values as our estimate, of 35.9 Pg yr−1 of soil eroded in 2012, is at least two times lower. Moreover, we estimate the spatial and temporal effects of land use change between 2001 and 2012 and the potential offset of the global application o…

010504 meteorology & atmospheric sciencesScienceGeneral Physics and AstronomyHigh resolution010501 environmental sciences01 natural sciencesArticleGeneral Biochemistry Genetics and Molecular BiologyAnthropogenic effect census conservation management environmental impact assessment GIS global perspective human activity land use change remote sensing soil conservation soil erosionSoutheast asiaCarbon cycleNutrientSettore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-ForestaliLand use land-use change and forestrylcsh:Scienceskin and connective tissue diseases0105 earth and related environmental sciencesLand productivityMultidisciplinaryQGeneral ChemistryAgriculture and Soil ScienceReference valuesEnvironmental sciencelcsh:QPhysical geographysense organs
researchProduct

Short-Term Vegetation Recovery after a Grassland Fire in Lithuania: The Effects of Fire Severity, Slope Position and Aspect

2016

In Lithuania, fire is frequently used by farmers as a tool to remove dry grass, improve soil nutrient status and help soil tilling. However, little is known about the ecological impacts of these fires, including vegetation recovery. The objective of this work is to study the impacts of a spring grassland fire on vegetation recuperation on an east-facing (A) and a west-facing slope (B), considering fire severity and slope position, 10, 17, 31 and 46 days after the fire. Because of their effects on fire behaviour, aspect, steepness and heterogeneity of topography favoured higher fire severity on slope B than on slope A. Three different slope positions were identified on slope A – flat top, mi…

010504 meteorology & atmospheric sciencesSoil nutrientsSlope positionSoil ScienceSlope aspectDevelopmentspring fire01 natural sciencesGrasslandvegetation recoverySlope positionEnvironmental ChemistryDevelopment3304 EducationVegetation and slope stability0105 earth and related environmental sciencesGeneral Environmental ScienceSpring firesHydrologygeographygeography.geographical_feature_category2300slope aspect04 agricultural and veterinary sciencesVegetationBodemfysica en LandbeheerPE&RCslope positionSoil Physics and Land Managementfire severityFire severity040103 agronomy & agricultureLand degradation0401 agriculture forestry and fisheriesEnvironmental sciencePlant coverVegetation recovery
researchProduct

Responses of aquatic plants to eutrophication in rivers:a revised conceptual model

2018

Compared to research on eutrophication in lakes, there has been significantly less work carried out on rivers despite the importance of the topic. However, over the last decade, there has been a surge of interest in the response of aquatic plants to eutrophication in rivers. This is an area of applied research and the work has been driven by the widespread nature of the impacts and the significant opportunities for system remediation. A conceptual model has been put forward to describe how aquatic plants respond to eutrophication. Since the model was created, there have been substantial increases in our understanding of a number of the underlying processes. For example, we now know the thre…

010504 meteorology & atmospheric sciencesmedia_common.quotation_subjectReviewPlant Sciencelcsh:Plant culture010501 environmental sciences01 natural sciencesEcology and EnvironmentNutrientAquatic plantlcsh:SB1-1110Applied researchphosphorusmorphotype0105 earth and related environmental sciencesmedia_commonmacrophytebusiness.industrynutrientEnvironmental resource managementBotanyPlant community15. Life on land6. Clean waterManagementMacrophyteeutrophicationHabitat13. Climate actionConceptual modelEnvironmental scienceHydrologyEutrophicationbusiness
researchProduct

The stoichiometry of particulate nutrients in Lake Tanganyika — implications for nutrient limitation of phytoplankton

1999

We studied the potential nutrient limitation of phytoplankton by means of seston nutrient stoichiometry and nutrient enrichment bioassays in the epilimnion of Lake Tanganyika. In most cases, the particulate carbon to phosphorus (C:P) ratio was high and indicated moderate P deficiency, while the respective C:N ratio mainly suggested moderate N deficiency. The N:P ratios of seston indicated rather balanced N and P supply. In three two-day enrichment bioassays in April—May 1995, a combined addition of P, N and organic carbon (glucose) always increased primary production in comparison to untreated controls. Primary production also slightly increased after the addition of phosphate-P, while the …

0106 biological sciences010504 meteorology & atmospheric sciencesbiology010604 marine biology & hydrobiologyPhosphorusSestonchemistry.chemical_elementPlanktonbiology.organism_classification01 natural sciences6. Clean waterchemistry.chemical_compoundNutrientAlgaechemistryEnvironmental chemistryEpilimnionBotanyPhytoplanktonAmmonium0105 earth and related environmental sciences
researchProduct

Allochthonous carbon is a major regulator to bacterial growth and community composition in subarctic freshwaters

2016

In the subarctic region, climate warming and permafrost thaw are leading to emergence of ponds and to an increase in mobility of catchment carbon. As carbon of terrestrial origin is increasing in subarctic freshwaters the resource pool supporting their microbial communities and metabolism is changing, with consequences to overall aquatic productivity. By sampling different subarctic water bodies for a one complete year we show how terrestrial and algal carbon compounds vary in a range of freshwaters and how differential organic carbon quality is linked to bacterial metabolism and community composition. We show that terrestrial drainage and associated nutrients supported higher bacterial gro…

0106 biological sciences010504 meteorology & atmospheric scienceschemistry.chemical_elementmicrobial ecologyPermafrost01 natural sciencesArticleNutrientcarbon cycleDissolved organic carbon0105 earth and related environmental sciencesEkologiTotal organic carbonMultidisciplinaryEcologyfreshwater ecologyEcologyhiilen kierto010604 marine biology & hydrobiologyTerrestrial biological carbon cycle15. Life on landMiljövetenskapSubarctic climatemikrobiekologiachemistryProductivity (ecology)13. Climate actionta1181Environmental scienceCarbonEnvironmental SciencesScientific Reports
researchProduct

Trophic state changes can affect the importance of methane-derived carbon in aquatic food webs

2017

Methane-derived carbon, incorporated by methane-oxidizing bacteria, has been identified as a significant source of carbon in food webs of many lakes. By measuring the stable carbon isotopic composition (δ13C values) of particulate organic matter, Chironomidae andDaphniaspp. and their resting eggs (ephippia), we show that methane-derived carbon presently plays a relevant role in the food web of hypertrophic Lake De Waay, The Netherlands. Sediment geochemistry, diatom analyses and δ13C measurements of chironomid andDaphniaremains in the lake sediments indicate that oligotrophication and re-eutrophication of the lake during the twentieth century had a strong impact on in-lake oxygen availabili…

0106 biological sciences010504 meteorology & atmospheric scienceshiili580 Plants (Botany)01 natural sciencesDaphniaNutrientlakesEphippiaNetherlandsGeneral Environmental ScienceTrophic levelTotal organic carbonCarbon IsotopesEcologybiologyEcologyrehevöityminenmethaneGeneral MedicineCladoceraFood webeutrophicationinternationalGeneral Agricultural and Biological SciencesFood Chain530 Physicsta1172chemistry.chemical_elementjärvetmetaaniChironomidaestable carbon isotopesGeneral Biochemistry Genetics and Molecular BiologyAnimalssurviaissääsketisotopes0105 earth and related environmental sciencesisotoopitGeneral Immunology and Microbiologycarbon010604 marine biology & hydrobiologybiology.organism_classificationDaphniachemistryfood websvesikirputta1181Environmental scienceEutrophicationCarbonravintoverkotProceedings of the Royal Society B: Biological Sciences
researchProduct

Tropical Andean forests are highly susceptible to nutrient inputs--rapid effects of experimental N and P addition to an Ecuadorian montane forest.

2012

Tropical regions are facing increasing atmospheric inputs of nutrients, which will have unknown consequences for the structure and functioning of these systems. Here, we show that Neotropical montane rainforests respond rapidly to moderate additions of N (50 kg ha -1 yr -1) and P (10 kg ha -1 yr -1). Monitoring of nutrient fluxes demonstrated that the majority of added nutrients remained in the system, in either soil or vegetation. N and P additions led to not only an increase in foliar N and P concentrations, but also altered soil microbial biomass, standing fine root biomass, stem growth, and litterfall. The different effects suggest that trees are primarily limited by P, whereas some pro…

0106 biological sciences010504 meteorology & atmospheric scienceslcsh:MedicinePlant Science01 natural sciencesPlant RootsTreesSoilNutrientGlobal Change EcologyBiomasslcsh:ScienceConservation ScienceBiomass (ecology)MultidisciplinaryEcologyEcologyPhosphorusVegetationBiodiversityPlant litterBiogeochemistrySoil EcologyPlantsTropical; Andean; Forests; Nutrient Input; N; P; Ecuadorian Montane ForestTerrestrial EnvironmentsEcuadorResearch ArticleNitrogenRainforestBiology010603 evolutionary biologyEcosystemsSystems EcologynutrientsPlant-Environment InteractionsForest ecologyEcosystemmontaneforestTerrestrial EcologyFertilizersBiologyEcosystem0105 earth and related environmental sciencesTropical ClimateChemical EcologyPlant Ecologylcsh:RTropics15. Life on landPlant Leaveslcsh:QEcological EnvironmentsPloS one
researchProduct

Reevaluating the Role of Organic Matter Sources for Coastal Eutrophication, Oligotrophication, and Ecosystem Health

2019

Organic matter (OM) in aquatic systems is either produced internally (autochthonous OM) or delivered from the terrestrial environment (ter-OM). For eutrophication (or the reverse – oligotrophication), the amount of autochthonous OM plays a key role for coastal ecosystem health. However, the influence of ter-OM on eutrophication or oligotrophication processes of coastal ecosystems is largely unclear. Therefore, ter-OM, or ter-OM proxies are currently not included in most policies or monitoring programs on eutrophication. Nevertheless, ter-OM is increasingly recognized as a strong driver of aquatic productivity: By influencing underwater light conditions and nutrient- and carbon availability,…

0106 biological sciences010504 meteorology & atmospheric scienceslcsh:QH1-199.5Ocean EngineeringVDP::Landbruks- og Fiskerifag: 900::Fiskerifag: 920::Akvakultur: 922Aquatic Sciencelcsh:General. Including nature conservation geographical distributionOceanography01 natural sciencesEnvironmental protectionnutrientsEcosystemlcsh:Science0105 earth and related environmental sciencesWater Science and TechnologybrowningGlobal and Planetary ChangeEcosystem health010604 marine biology & hydrobiologyAquatic ecosystemorganic carbondissolved organic carbonCoastal erosioncoastal darkeningeutrophicationProductivity (ecology)Benthic zoneEnvironmental scienceTerrestrial ecosystemlcsh:QEutrophicationFrontiers in Marine Science
researchProduct