Search results for "Nutrient removal"

showing 10 items of 22 documents

The role of EPS in fouling and foaming phenomena for a membrane bioreactor

2013

In contraposition to conventional activated sludge processes, the foaming phenomenon in membrane bioreactor (MBR) is still in its infancy. On the other hand, although several studies have been carried out for better understanding the fouling phenomenon in MBR there are still some gaps in the up-to-date knowledge. The extracellular polymeric substances (EPSs) may have a primary role in fouling and foaming phenomena which in turn can be crucial for MBRs. The aim of this study is to detect a possible relationship that EPSs may have with fouling and foaming in an MBR for wastewater treatment. Foaming phenomenon is monitored by performing specific foam-tests: Foam Power, Scum Index, Foam Rating …

Environmental EngineeringSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleWaste managementFoulingPolymersRenewable Energy Sustainability and the EnvironmentChemistryMembrane foulingMembranes ArtificialBioengineeringFoulingGeneral MedicineMembrane bioreactorBioreactorsMBR plantExtracellular polymeric substanceActivated sludgeChemical engineeringNutrient removalSewage treatmentWaste Management and DisposalFoamingBioresource Technology
researchProduct

Water resource recovery by means of microalgae cultivation in outdoor photobioreactors using the effluent from an anaerobic membrane bioreactor fed w…

2016

[EN] With the aim of assessing the potential of microalgae cultivation for water resource recovery (WRR), the performance of three 0.55 m3 flat-plate photobioreactors (PBRs) was evaluated in terms of nutrient removal rate (NRR) and biomass production. The PBRs were operated outdoor (at ambient temperature and light intensity) using as growth media the nutrient-rich effluent from an AnMBR fed with pre-treated sewage. Solar irradiance was the most determining factor affecting NRR. Biomass productivity was significantly affected by temperatures below 20 °C. The maximum biomass productivity (52.3 mg VSS·L−1·d−1) and NRR (5.84 mg NH4-N·L−1·d−1 and 0.85 mg PO4-P·L−1·…

INGENIERIA HIDRAULICAEnvironmental EngineeringLight020209 energyFlat-plate photobioreactorsBiomassSewagePhotobioreactorBioengineering02 engineering and technology010501 environmental sciencesWastewater01 natural sciencesPhotobioreactorsNutrientBioreactorsNutrient removal0202 electrical engineering electronic engineering information engineeringMicroalgaeBiomassWaste Management and DisposalEffluentTECNOLOGIA DEL MEDIO AMBIENTE0105 earth and related environmental sciencesResource recoverySewageRenewable Energy Sustainability and the Environmentbusiness.industryEnvironmental engineeringTemperatureMembranes ArtificialGeneral MedicineOutdoor cultivationCulture MediaLight intensityWastewaterWater ResourcesEnvironmental sciencebusinessWater MicrobiologyBiotechnologyScenedesmusBioresource technology
researchProduct

Wastewater nutrient removal in a mixed microalgae-bacteria culture: effect of light and temperature on the microalgae-bacteria competition.

2018

[EN] The aim of this study was to evaluate the effect of light intensity and temperature on nutrient removal and biomass productivity in a microalgae¿bacteria culture and their effects on the microalgae¿bacteria competition. Three experiments were carried out at constant temperature and various light intensities: 40, 85 and 125¿µE¿m¿2¿s¿1. Other two experiments were carried out at variable temperatures: 23¿±¿2°C and 28¿±¿2°C at light intensity of 85 and 125¿µE¿m¿2¿s¿1, respectively. The photobioreactor was fed by the effluent from an anaerobic membrane bioreactor. High nitrogen and phosphorus removal efficiencies (about 99%) were achieved under the following operating conditions: 85¿125¿µE¿…

INGENIERIA HIDRAULICALightNitrogen0208 environmental biotechnologyPhotobioreactor02 engineering and technologyChlorella010501 environmental sciencesBiologyWastewater01 natural sciencesWaste Disposal Fluidchemistry.chemical_compoundPhotobioreactorsNitrateNutrient removalBioreactorMicroalgaeEnvironmental ChemistryWaste Management and DisposalEffluentTECNOLOGIA DEL MEDIO AMBIENTE0105 earth and related environmental sciencesWater Science and TechnologyBacteriaEnvironmental engineeringTemperaturePhosphorusGeneral Medicinebiology.organism_classificationPulp and paper industryBacteria competition020801 environmental engineeringLight intensityAnaerobic digestionchemistryNitrifying bacteriaNitrificationEnvironmental technology
researchProduct

Selecting the most suitable microalgae species to treat the effluent from an anaerobic membrane bioreactor.

2018

[EN] Conventional treatments for nutrient removal in wastewater are shifting to Anaerobic Membrane Bioreactors, which produce a high-quality effluent with minimum sludge production. The effluent resulting contains high nitrogen and phosphorus load that can be eliminated by microalgae culture. The aim of this study is to evaluate the ammonium and phosphorus removal rate of different microalgae species in the effluent of an anaerobic treatment. For that, 4 different microalgae species have been tested (Chlamydomonas reinhardtii, Scenedesmus obliquus, Chlorella vulgaris and Monoraphidium braunii) in batch monoculture and mixed conditions. Results indicate that all species are able to eliminate…

INGENIERIA HIDRAULICANitrogen0208 environmental biotechnologyChlorella vulgarischemistry.chemical_element02 engineering and technology010501 environmental sciencesWastewater01 natural sciencesWaste Disposal Fluidchemistry.chemical_compoundNutrientBioreactorsNutrient removalBioreactorMicroalgaeEnvironmental ChemistryAmmoniumAnaerobiosisWaste Management and DisposalEffluentTECNOLOGIA DEL MEDIO AMBIENTE0105 earth and related environmental sciencesWater Science and TechnologyProductivitySubmerged anaerobic membrane bioreactorPhosphorusPhosphorusGeneral MedicinePulp and paper industry020801 environmental engineeringWastewaterchemistryChlorella vulgarisAnaerobic exerciseEnvironmental technology
researchProduct

Integrated fixed-film activated sludge membrane bioreactors versus membrane bioreactors for nutrient removal: A comprehensive comparison

2018

Abstract This research elucidates the pollutants (nutrients and carbon) removal performance and nitrous oxide (N2O) emissions of two pilot plants. Specifically, a University of Cape Town (UCT) Membrane Bioreactor (MBR) plant and an Integrated Fixed Film Activated Sludge (IFAS)-UCT-MBR plant were investigated. The plants were fed with real wastewater augmented with acetate and glycerol in order to control the influent carbon nitrogen ratio (C/N). The short-term effect of the inlet C/N ratio variation (C/N = 5 mgCOD/mgN and C/N = 10 mgCOD/mgN) on the behaviour of both plants was investigated. The results showed that the IFAS-UCT-MBR configuration provided the best performance in terms of poll…

Membrane foulingEnvironmental EngineeringNitrogen0208 environmental biotechnologychemistry.chemical_element02 engineering and technologyWastewater010501 environmental sciencesManagement Monitoring Policy and LawMembrane bioreactorWaste Disposal Fluid01 natural sciencesBioreactorsNutrient removalBioreactorGreenhouse gaseWaste Management and Disposal0105 earth and related environmental sciencesSewageFoulingSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleChemistryBiofilmMembrane foulingMembranes ArtificialGeneral MedicineRespirometryPulp and paper industryNitrogen020801 environmental engineeringActivated sludgeMembraneWastewater
researchProduct

Solids and Hydraulic Retention Time Effect on N2O Emission from Moving-Bed Membrane Bioreactors

2018

Biological nutrient removal was operated at different solids (SRT) and hydraulic retention times (HRT) in order to assess their influence on nitrous oxide (N2O) emission from a hybrid moving-bed membrane bioreactor. The observed results show that the N2O production decreased when the SRT/HRT was decreased. The maximum N2O gaseous concentration was measured in the aerobic reactor at the end of phase I, and it decreased through phases II and III. From mass balances over the reactors of the system, the aerated (aerobic and membrane) reactors were the largest producers of N2O, showing that the greater part of N2O was produced during the nitrification process.

Petroleum engineeringHydraulic retention timeBiological nutrient removalSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleChemistryGeneral Chemical Engineering0208 environmental biotechnologyN2OChemistry (all)02 engineering and technologyGeneral Chemistry010501 environmental sciences01 natural sciencesIndustrial and Manufacturing Engineering020801 environmental engineeringMembraneSolids retention timeBioreactorIntegrated fixed-film activated-sludge membrane bioreactorChemical Engineering (all)Moving bedHydraulic retention time0105 earth and related environmental sciences
researchProduct

Autochthonous microalgae grown in municipal wastewaters as a tool for effectively removing nitrogen and phosphorous

2020

Abstract Microalgae have promising applications in wastewater treatment because of their ability to use inorganic compounds such as nitrates and phosphates as nutrients for their growth. Microalgae are applied to the secondary and tertiary bio-treatment with two benefits: i) pollutants removal from wastewater; ii) production of microalgal biomass, that can be exploited as a source of biomass and biomolecules. In the present work, four different microalgal strains (two from culture collections and two isolated from Sicilian littoral) were tested in municipal sewage bioremediation. The sewage of a municipal plant, already processed with primary treatment, was used for the cultivation of micro…

Secondary treatmentBiochemical oxygen demandbusiness.industryBioremediation Chlorella Dunaliella MicroalgaeNannochloropsis Nutrient removalSettore ING-IND/25 - Impianti ChimiciProcess Chemistry and TechnologyChemical oxygen demandBiomassSewage02 engineering and technology010501 environmental sciencesPulp and paper industry01 natural sciencesBioremediation020401 chemical engineeringWastewaterEnvironmental scienceSewage treatment0204 chemical engineeringSafety Risk Reliability and QualitybusinessWaste Management and Disposal0105 earth and related environmental sciencesBiotechnologyJournal of Water Process Engineering
researchProduct

Biological nutrient removal in a UCT-MBR pilot

2010

In the last years, there has been an increasing awareness about the environment pollution protection. As a consequence, the Environmental Regulation has increased the emission limits imposing, for instance, lower concentrations at the wastewater treatment plant (WWTP) outlets. As a consequence of this fact, several WWTPs are not able to respect the emission limits and need to be upgraded. In view of such needs new technology are emerging and new WWTP solution schemes are being realized. With respects to the nutrient removal enhancing, a possible solution can be the UCT-MBR which couples the University of Cape Town scheme with a Membrane Bioreactor. In the light of such considerations, the s…

Settore ICAR/03 - Ingegneria Sanitaria-AmbientaleEnvironmental regulation Nutrient removal UCT-MBR municipal wastewater.
researchProduct

The role of EPS in fouling and foaming phenomena occurring in an UCT-MBR pilot plant

2012

The aim of this study is to detect a possible relationship between EPS and fouling and EPS and foaming in a University Cape Town (UCT) membrane bioreactor (MBR) pilot plant. The UCT-MBR pilot plant was fed with 40 L/h of real wastewater and monitored for 165 days. Specifically physical/chemical features of influent, permeate and mixed liquor in different sections were analyzed. The fouling phenomenon was studied monitoring the hydraulic resistances of the membrane. The extracellular polymeric substances (EPSs) concentration inside the aerobic tank were also measured. The foaming phenomenon was monitored by performing the Foam Power and Scum Index testes. Results have shown a high correlatio…

Settore ICAR/03 - Ingegneria Sanitaria-AmbientaleMBR plant nutrient removal Foam Power Scum Index.
researchProduct

A moving bed membrane bioreactor pilot plant for carbon and nutrient removal

2016

The paper reports the main results of an experimental gathering campaign carried out on a moving bed membrane bioreactor pilot plant conceived for carbon and nutrients removal according to a University of Cape Town scheme. Organic carbon, nitrogen and phosphorus removal, biokinetic/stoichiometric constants, membrane fouling tendency and sludge dewaterability have been assessed during experiments. The achieved results showed that pilot plant was able to guarantee very high carbon removal, with average efficiency of 98%. In terms of nitrification, the system showed an excellent performance, with efficiencies higher than 98% for most of the experiments. This result might be related to the pres…

Settore ICAR/03 - Ingegneria Sanitaria-AmbientaleNutrient removal WWTP membrane MBBR wastewater
researchProduct