Search results for "OCT"

showing 10 items of 3052 documents

CCDC 981913: Experimental Crystal Structure Determination

2014

Related Article: Abdou K. D. Dimé, Charles H. Devillers, Hélène Cattey, Dominique Lucas|2014|Dalton Trans.|43|14554|doi:10.1039/C4DT00221K

(mu-7172737-tetrakis(4-methylphenyl)-1232-diphenyl-525414243454647-octaazaundecacyclo[36.2.1.136.1811.11316.11821.12326.12831.13336.0224.0422]octatetraconta-136(48)7911(47)12141618(45)19212326(44)272931(43)32343638(41)39-docosaenato(4-)-1kappa4N25N41N42N43:2kappa4N5N45N46N47)-di-nickel(ii) chloroform solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 261263: Experimental Crystal Structure Determination

2006

Related Article: Zhenyu Shi, Jun Peng, C.J.Gomez-Garcia, S.Benmansour, Xiaojun Gu|2006|J.Solid State Chem.|179|253|doi:10.1016/j.jssc.2005.09.051

(mu~10~-Phosphato)-octakis(mu~3~-oxo)-octadecakis(mu~2~-oxo)-tetrakis(110-phenanthroline)-dodecaoxo-di-cobalt(ii)-tetra-molybdenum(v)-octa-molybdenum(vi)-di-vanadium(iv) (mu~10~-phosphato)-octakis(mu~3~-oxo)-octadecakis(mu~2~-oxo)-dihydroxy-tetrakis(110-phenanthroline)-dodecaoxo-di-cobalt(ii)-tetra-molybdenum(v)-octa-molybdenum(vi)-di-vanadium(iv) hydrateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 723744: Experimental Crystal Structure Determination

2010

Related Article: A.Gonzalez-Alvarez, I.Alfonso, J.Cano, P.Diaz, V.Gotor, V.Gotor-Fernandez, E.Garcia-Espana, S.Garcia-Granda, H.R.Jimenez, F.Lloret|2009|Angew.Chem.,Int.Ed.|48|6055|doi:10.1002/anie.200901888

(mu~3~-359111517-Hexa-aza-1713(26)-tripyridina-41016(12)-tricyclohexanacyclooctadecaphane)-bis(mu~3~-hydroxo)-tri-copper(ii) dichloride diperchlorate pentahydrateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1919442: Experimental Crystal Structure Determination

2019

Related Article: Jana Anhäuser, Rakesh Puttreddy, Lukas Glanz, Andreas Schneider, Marianne Engeser, Kari Rissanen, Arne Lützen|2019|Chem.-Eur.J.|25|12294|doi:10.1002/chem.201903164

(rac)-hexakis(mu-NN'-[tricyclo[8.2.2.247]hexadeca-1(12)46101315-hexaene-512-diylbis(41-phenylene)]bis[1-(pyridin-2-yl)methanimine])-tetra-iron(ii) octakis(trifluoromethanesulfonate) unknown solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1919440: Experimental Crystal Structure Determination

2019

Related Article: Jana Anhäuser, Rakesh Puttreddy, Lukas Glanz, Andreas Schneider, Marianne Engeser, Kari Rissanen, Arne Lützen|2019|Chem.-Eur.J.|25|12294|doi:10.1002/chem.201903164

ΔΔΔ)-hexakis(mu-(RP)-NN'-[tricyclo[8.2.2.247]hexadeca-1(12)46101315-hexaene-512-diylbis(41-phenylene)]bis[1-(pyridin-2-yl)methanimine])-tetra-iron(ii) octakis(trifluoromethanesulfonate) acetonitrile unknown solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

Hexakis(diethylacetamide)iron(II) hexahalorhenate(IV) ionic salts: X-ray structures and magnetic properties

2015

Two novel Fe<sup>II</sup>-Re<sup>IV</sup> compounds of general formula [Fe<sup>II</sup>(DEA)<inf>6</inf>][Re<sup>IV</sup>X<inf>6</inf>] where DEA = diethylacetamide and X = Cl (1) and Br (2) have been prepared and magnetostructurally characterised. Complexes 1 and 2 are isomorphic ionic salts that crystallise in the trigonal crystal system with space group R(-3). The rhenium(IV) ion in 1 and 2 is six-coordinate with six chloro (1) or bromo (2) ligands building a regular octahedral chromophore. The Fe<sup>II</sup> ion is also six-coordinate, and bonded to six oxygen atoms from six DEA molecules. [Fe<sup&gt…

/dk/atira/pure/subjectarea/asjc/1600/1606/dk/atira/pure/subjectarea/asjc/1600/1604Rhenium(IV) complexes/dk/atira/pure/subjectarea/asjc/2500/2505ChemistryInorganic chemistrySupramolecular chemistryIonic bondingchemistry.chemical_elementDiethylacetamideCrystal structureRheniumIron(II) complexesMagnetic susceptibilityX-ray diffractionInorganic ChemistryCrystallographyOctahedronMagnetic propertiesX-ray crystallographyMaterials ChemistryMoleculePhysical and Theoretical ChemistryPolyhedron
researchProduct

Thermal- and photo-induced spin crossover in the 1D coordination polymer [Fe(4-tBupy)3][Au(CN)2]2 (4-tBupy = 4-tert-butylpyridine)

2021

Reaction of the unidentate pyridine ligand containing a bulky t-butyl substituent with Fe2+ and [Au(CN)2]− affords a new type of spin crossover (SCO) coordination polymer in the 1D compound [Fe(4-tBupy)3][Au(CN)2]2⋅0.5H2O (1), which is formed by chains of Fe(II) complexes linked through bridging [Au(CN)2]− with three terminal 4-tBupy and one monodentate [Au(CN)2]− ligands completing the octahedral coordination around Fe(II). Longer reaction times led to the minor products [Fe(4-tBupy)2][Au(CN)2]2 (2), which presents a 2D structure more similar to that found in the other SCO compounds based on [Au(CN)2]−, and the 1D compound [Fe(4-tBupy)2(MeOH)][Au(CN)2]2 (3), in which one of the three termi…

010302 applied physicsDenticityCoordination polymerSpin transitionSubstituentGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnology01 natural sciences3. Good healthchemistry.chemical_compoundCrystallographyOctahedronchemistrySpin crossoverExcited state0103 physical sciencesMoleculeFísica de l'estat sòlidCompostos de coordinació0210 nano-technologyMaterials
researchProduct

Pressure-induced insulator-to-metal transition in α-SnWO4

2016

In-situ high-pressure W L1 and L3 edges x-ray absorption and mid-infrared spectroscopies complemented by first-principles calculations suggest the existence of pressure- induced insulator-to-metal transition in α-SnWO4 in the range of 5-7 GPa. Its origin is explained by a symmetrization of metal-oxygen octahedra due to a strong interaction of Sn 5s, W 5d and O 2p states along the b-axis direction, leading to a collapse of the band gap.

010302 applied physicsHistoryCondensed matter physicsAbsorption spectroscopyBand gapChemistryStrong interactionchemistry.chemical_element02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesSpectral lineComputer Science ApplicationsEducationMetalOctahedronvisual_art0103 physical sciencesvisual_art.visual_art_medium0210 nano-technologySpectroscopyTinJournal of Physics: Conference Series
researchProduct

Atomic structure of manganese-doped yttrium orthoaluminate

2018

Abstract Using hybrid exchange-correlation functional within density functional theory we have performed first-principle total energy calculations of Mn-doped yttrium orthoaluminate (YAlO3). Its equilibrium atomic structure has been predicted through optimization of coordinates of all atoms using a supercell approach. In our research both Mn3+ and Mn2+ ions have been substituted for the host alumina atom at orthorhombic Pbnm unit cell of YAlO3. F-center has been implemented as charge-compensating defect in case, when Mn2+ dopant is under study. In this study we thoroughly analyze the atomic displacements in seven nearest to Mn ion coordination spheres. Insertion of isoelectronic substitutio…

010302 applied physicsNuclear and High Energy PhysicsMaterials scienceCoordination sphereDopantchemistry.chemical_element02 engineering and technologyYttrium021001 nanoscience & nanotechnology01 natural sciencesCrystallographic defectCrystallographychemistryOctahedron0103 physical sciencesAtomOrthorhombic crystal systemDensity functional theory0210 nano-technologyInstrumentationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Luminescence of polymorphous SiO2

2016

Abstract The luminescence of self-trapped exciton (STE) was found and systematically studied in tetrahedron structured silica crystals (α-quartz, coesite, cristobalite) and glass. In octahedron structured stishovite only host material defect luminescence was observed. It strongly resembles luminescence of oxygen deficient silica glass and γ or neutron irradiated α-quartz. The energetic yield of STE luminescence for α-quartz and coesite is about 20% of absorbed energy and about 5(7)% for cristobalite. Two types of STE were found in α-quartz. Two overlapping bands of STEs are located at 2.5–2.7 eV. The model of STE is proposed as Si–O bond rupture, relaxation of created non-bridging oxygen (N…

010302 applied physicsRadiationMaterials scienceMineralogy02 engineering and technologyElectronic structureengineering.material021001 nanoscience & nanotechnology01 natural sciencesCristobalitesymbols.namesakeCrystallographyOctahedron0103 physical sciencesCoesitesymbolsengineering0210 nano-technologyRaman spectroscopyLuminescenceInstrumentationStishoviteNatural bond orbitalRadiation Measurements
researchProduct