Search results for "OLDS"

showing 10 items of 602 documents

EXPERIMENTAL STUDY ON THE FLUID FLOWIN THE CONDUCTS

2018

Fluids are high mobility environments that, under the action of external forces, are continuously and irreversibly deformed. The flow of fluid through a pipe is ensured by a pressure difference between its ends. The presented paper aims to experimentally determine the velocity profile of flowing a Newtonian fluid through a circular section pipe by measuring the local speed at five points on the pipe radius.

Physics::Fluid Dynamicslcsh:TA1-2040floweducationturbulentReynolds criterionlcsh:Engineering (General). Civil engineering (General)laminarAnalele Universităţii "Constantin Brâncuşi" din Târgu Jiu: Seria Inginerie
researchProduct

Establishment of a pulmonary epithelial barrier on biodegradable poly-L-lactic-acid membranes

2019

Development of biocompatible and functional scaffolds for tissue engineering is a major challenge, especially for development of polarised epithelia that are critical structures in tissue homeostasis. Different in vitro models of the lung epithelial barrier have been characterized using non-degradable polyethylene terephthalate membranes which limits their uses for tissue engineering. Although poly-L-lactic acid (PLLA) membranes are biodegradable, those prepared via conventional Diffusion Induced Phase Separation (DIPS) lack open-porous geometry and show limited permeability compromising their use for epithelial barrier studies. Here we used PLLA membranes prepared via a modification of the…

PhysiologyCell MembranesCell Culture TechniquesBiocompatible Materials02 engineering and technologyEpitheliumTissue engineeringAnimal CellsAbsorbable ImplantsMaterials TestingElectric ImpedanceMedicine and Health SciencesLungTissue homeostasisBarrier functionStaining0303 health sciencesMultidisciplinaryTissue ScaffoldsTight junctionPolyethylene TerephthalatesChemistryQRCell Staining021001 nanoscience & nanotechnologyMembrane StainingElectrophysiologyMembranePhysical SciencesMedicineCytokinesBiological CulturesCellular Structures and OrganellesJunctional ComplexesCellular TypesAnatomy0210 nano-technologyResearch ArticleCell PhysiologySciencePolyestersMaterials ScienceMaterial PropertiesResearch and Analysis MethodsMembrane PotentialPermeabilityCell LineTight Junctions03 medical and health sciencesCell AdhesionHumans030304 developmental biologyBiochemistry Genetics and Molecular Biology (all)Tissue EngineeringBiology and Life SciencesEpithelial CellsMembranes ArtificialCell BiologyCell CulturesBiological TissueAgricultural and Biological Sciences (all)Specimen Preparation and TreatmentCell culturePermeability (electromagnetism)BiophysicsCytokine secretionPLOS ONE
researchProduct

Assessment of ventilatory thresholds from heart rate variability in five incremental treadmill tests in cross country skiers

2014

Incremental treadmill tests are widely used in the field of exercise physiology for the assessment of Ventilatory Thresholds for clinical and sport oriented issues. The assessment of Ventilatory Thresholds (VTs) from Heart Rate Variability (HRV) is a relatively new approach with increasing popularity because it is a non-invasive and economical method. Nevertheless, this has not been used in Cross Country (XC) Skiing, an endurance sport where the knowledge of VTs holds special importance. The purpose of the study was to assess VTs using the data derived from HRV analysis in the five main XC skiing-related techniques, Double Poling (DP), Diagonal Striding (DS), Nordic Walking (NW), V1 Skating…

Poling FrequencyVentilatory ThresholdssykeCross Country SkiExercise PhysiologyHRVHeart Rate VariabilityBreathing FrequencyliikuntafysiologiaAssessmenthiihtohiihtäjät
researchProduct

Preparation of Poly(l-lactic acid) Scaffolds by Thermally Induced Phase Separation: Role of Thermal History

2018

Abstract Poly-L-Lactic Acid (PLLA) scaffolds for tissue engineering were prepared via thermally induced phase separation of a ternary system PLLA/dioxane/tetrahydrofurane. An extension to solution of a previously developed method for solidification from the melt was adopted, the technique being based on a Continuous Cooling Transformation (CCT) approach, consisting in recording the thermal history of rapidly cooled samples and analysing the resulting morphology. Different foams were produced by changing the thermal history, the dioxane to THF ratio (50/50, 70/30, 90/10 v/v) and the polymer concentration (2, 2.5, 4 ° wt) in the starting ternary solution. Pore size, porosity, melting and crys…

Poly l lactic acidPore sizeMorphology (linguistics)Materials sciencePolymers and PlasticsBiocompatibilitySpinodal decompositionGeneral Chemical Engineering02 engineering and technology010402 general chemistryMEMBRANES01 natural sciencesSPINODAL DECOMPOSITIONIndustrial and Manufacturing EngineeringBIOCOMPATIBILITYPOROUS SCAFFOLDSTISSUE REGENERATIONTissue engineeringMaterials ChemistryPOLYMERIC SCAFFOLDSTernary numeral systemPORE-SIZECELL TRANSPLANTATION021001 nanoscience & nanotechnology0104 chemical sciencesMembraneChemical engineeringMORPHOLOGY0210 nano-technologyBEHAVIOR
researchProduct

3D cultures of rat astrocytes and brain capillary endothelial cells on Poly-L-lactic acid scaffolds

2016

Tissue engineering is an emerging multidisciplinary field that aims at reproducing in vitro and/or in vivo tissues with morphological and functional features similar to the biological tissue of the human body. In this communication we report setting of three-dimensional structures able to mimic the extracellular matrix of the nervous system: we prepared Poly-L-Lactic Acid (PLLA) porous scaffolds via thermally induced phase separation (TIPS), and investigated the parameters that influence porosity, average pore size and degree of interconnection, i.e. polymer concentration, temperature and time of process. Astrocytes and brain capillary endothelial cells (BCECs) were cultured on these three-…

Poly-L-Lactic Acid (PLLA) porous scaffolds Astrocytes brain capillary endothelial cells (BCECs) 2D culture systems and 3D culture systemsSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiSettore BIO/13 - Biologia ApplicataSettore BIO/10 - BiochimicaSettore BIO/06 - Anatomia Comparata E Citologia
researchProduct

Biocompatibility evaluation of PLLA scaffolds for vascular tissue engineering

2015

Poly-L-lactic acid (PLLA), a hemicrystalline material, has been extensively studied in applications of engineered tissues, because it is biodegradable, absorbable and it supports cell attachment and growth. The purpose of this study is to evaluate tissue/ material interactions, neovascularization and the biocompatibility of PLLA by optical and scanning electron microscopy in a model of animal implant. PLLA porous disks were implanted into the dorsal subcutis of BALB/C mice for 1, 2, 3, and 8 weeks. The bioptic samples of excised PLLA and the surrounding tissue were evaluated for inflammatory response and tissue ingrowth. The samples were divided in two halves: one was fixed in neutral buffe…

Poly-L-lactic acid; (PLLA); biocompatibility; immune responce; implant; scaffold; angiogenesisBiocompatibility PLLA scaffolds angiogenesis tissue engineering
researchProduct

Polyaspartamide-polylactide electrospun scaffolds for potential topical release of ibuprofen

2012

Polyaspartamide polylactide electrospun scaffolds ibuprofen drug delivery
researchProduct

A facile and eco-friendly route to fabricate poly(Lactic acid) scaffolds with graded pore size

2016

Over the recent years, functionally graded scaffolds (FGS) gaineda crucial role for manufacturing of devices for tissue engineering. The importance of this new field of biomaterials research is due to the necessity to develop implants capable of mimicking the complex functionality of the various tissues, including a continuous change from one structure or composition to another. In this latter context, one topic of main interest concerns the design of appropriate scaffolds for bone-cartilage interface tissue. In this study, three-layered scaffolds with graded pore size were achieved by melt mixing poly(lactic acid) (PLA), sodium chloride (NaCl) and polyethylene glycol (PEG). Pore size distr…

Pore sizeMaterials sciencePolymersGeneral Chemical EngineeringParticulate leachingBiocompatible MaterialsBioengineeringContext (language use)02 engineering and technologyPolyethylene glycol010402 general chemistry01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyPolyethylene Glycolschemistry.chemical_compoundTissue engineeringMelt mixingPEG ratioHumansLactic AcidPorosityTissue EngineeringTissue ScaffoldsGeneral Immunology and MicrobiologyGeneral NeuroscienceInterface tissue engineeringPore size gradientFunctionally graded scaffold021001 nanoscience & nanotechnologyEnvironmentally friendlyPEG0104 chemical sciencesLactic acidchemistryChemical engineeringPLA0210 nano-technologyPorosity
researchProduct

Poly(ethylenglycol) mimics adhesive capability of the ECM treatment on 3D polylactide-based scaffolds to study in vitro human hepatocarcinoma process…

2011

Porous scaffolds PLA PEG
researchProduct

Analysis of complex singularities in high-Reynolds-number Navier-Stokes solutions

2013

AbstractNumerical solutions of the laminar Prandtl boundary-layer and Navier–Stokes equations are considered for the case of the two-dimensional uniform flow past an impulsively-started circular cylinder. The various viscous–inviscid interactions that occur during the unsteady separation process are investigated by applying complex singularity analysis to the wall shear and streamwise velocity component of the two solutions. This is carried out using two different methodologies, namely a singularity-tracking method and the Padé approximation. It is shown how the van Dommelen and Shen singularity that occurs in solutions of the Prandtl boundary-layer equations evolves in the complex plane be…

Prandtl numberMathematics::Analysis of PDEsFOS: Physical sciencesPhysics::Fluid Dynamicssymbols.namesakeFlow separationSingularityboundary layer separation Navier–Stokes equations transition to turbulenceFOS: MathematicsMathematics - Numerical AnalysisComplex Variables (math.CV)Navier–Stokes equationsSettore MAT/07 - Fisica MatematicaMathematical PhysicsPhysicsMathematics - Complex VariablesMechanical EngineeringMathematical analysisFluid Dynamics (physics.flu-dyn)Reynolds numberLaminar flowPhysics - Fluid DynamicsMathematical Physics (math-ph)Numerical Analysis (math.NA)Condensed Matter PhysicsMechanics of MaterialssymbolsGravitational singularityPotential flow
researchProduct