Search results for "OLDS"

showing 10 items of 602 documents

Practical thresholds to distinguish erosive and rill rainfall events

2019

Abstract In this paper, 1017 rainfall events from 2008 to 2017 are used to identify the rainfall threshold that produces upland erosion at the Masse (central Italy) and Sparacia (southern Italy) experimental stations. The rainfall events are classified into three classes: non-erosive, interrill-only and rill. The threshold values for separating as correctly as possible the erosive rains (case I) and the rill rains (case II) are derived solely from the hyetograph. Each threshold value is obtained by imposing that the long-term erosivity of the events above the threshold is equal to the long-term erosivity of all erosive events (case I) or only rill events (case II). The performances of selec…

Water erosionThreshold limit valueRainfall patternSettore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-ForestaliRUSLEUSLETruncation (statistics)Interrill; Rainfall erosivity; Rainfall hyetograph; Rainfall pattern; Rainfall thresholds; RUSLE; Soil erosion; Soil loss; USLERainfall hyetographWater Science and TechnologyHydrologySoil logeographyRainfall thresholdsgeography.geographical_feature_categoryInterrillRainfall erosivityRainfall thresholdSoil lossRillHyetographSoil erosionErosionEnvironmental scienceScale (map)Predictive modellingJournal of Hydrology
researchProduct

Numerical and experimental investigation of a cross-flow water turbine

2016

ABSTRACTA numerical and experimental study was carried out for validation of a previously proposed design criterion for a cross-flow turbine and a new semi-empirical formula linking inlet velocity to inlet pressure. An experimental test stand was designed to conduct a series of experiments and to measure the efficiency of the turbine designed based on the proposed criterion. The experimental efficiency was compared to that from numerical simulations performed using a RANS model with a shear stress transport (SST) turbulence closure. The proposed semi-empirical velocity formula was also validated against the numerical solutions for cross-flow turbines with different geometries and boundary c…

Water turbine020209 energyFlow (psychology)experimental facility02 engineering and technology010501 environmental sciences01 natural sciencesTurbinehydraulic modelSettore ICAR/01 - IdraulicaPhysics::Fluid Dynamics0202 electrical engineering electronic engineering information engineeringShear stressBoundary value problem0105 earth and related environmental sciencesWater Science and TechnologyCivil and Structural EngineeringTurbulenceMechanicshydraulics of renewable energy systemhydraulic machinery designCross-flow turbine; experimental facility; hydraulic machinery design; hydraulic model; hydraulics of renewable energy systems; RANS modelCross-flow turbineRANS modelEnvironmental scienceCross-flow turbineReynolds-averaged Navier–Stokes equations
researchProduct

Ricci Tensors on Some Infinite Dimensional Lie Algebras

1999

Abstract The Ricci tensor has been computed in several infinite dimensional situations. In this work, we shall be interested in the case of the central extension of loop groups and in the asymptotic behaviour of the Ricci tensor on free loop groups as the Riemannian metric varies.

Weyl tensorPure mathematicsRiemann curvature tensorCurvature of Riemannian manifoldsMathematical analysisRicci flowEinstein tensorsymbols.namesakeLanczos tensorsymbolsRicci decompositionMathematics::Differential GeometryRicci curvatureAnalysisMathematicsJournal of Functional Analysis
researchProduct

Weak Levi-Civita Connection for the Damped Metric on the Riemannian Path Space and Vanishing of Ricci Tensor in Adapted Differential Geometry

2001

Abstract We shall establish in the context of adapted differential geometry on the path space P m o ( M ) a Weitzenbock formula which generalizes that in (A. B. Cruzeiro and P. Malliavin, J. Funct. Anal . 177 (2000), 219–253), without hypothesis on the Ricci tensor. The renormalized Ricci tensor will be vanished. The connection introduced in (A. B. Cruzeiro and S. Fang, 1997, J. Funct. Anal. 143 , 400–414) will play a central role.

Weyl tensorRiemann curvature tensorCurvature of Riemannian manifoldsMathematical analysisRicci flowsymbols.namesakeLanczos tensorsymbolsRicci decompositionTensor densityRicci curvatureAnalysisMathematical physicsMathematicsJournal of Functional Analysis
researchProduct

Polystyrene nanoparticle-templated hollow titania nanosphere monolayers as ordered scaffolds

2018

We report a novel multi-step method for the preparation of ordered mesoporous titania scaffolds and show an illustrative example of their application to solar cells. The method is based on (monolayer) colloidal nanosphere lithography that makes use of polystyrene nanoparticles organised at a water–air interface and subsequently transferred onto a solid substrate. A titania precursor solution (titanium(IV) isopropoxide in ethanol) is then drop-cast onto the monolayer and left to “incubate” overnight. Surprisingly, instead of the expected inverse monolayer-structure, a subsequent calcination step of the precursor yields an ordered monolayer of hollow titania nanospheres with a wall thickness …

X ray diffractionX ray photoelectron spectroscopySolar cellMonolayer structureWater-air interfaceMonolayerPhase interfaceSettore ING-INF/01NanocrystalPerovskiteNanocrystalline anatasePerovskite solar cellPolystyrene nanoparticlePower conversion efficienciePrecursor solutionNanoparticleTitanium compoundInterfaces (materials)Interfaces (materials); Monolayers; Nanocrystals; Nanoparticles; Nanospheres; Perovskite; Perovskite solar cells; Phase interfaces; Polystyrenes; Scaffolds (biology); Solar cells; Titanium compounds; Titanium dioxide; X ray diffraction; Monolayer structures; Nano Sphere Lithography; Nanocrystalline anatase; Polystyrene nanoparticles; Power conversion efficiencies; Precursor solutions; Titania nanospheres; Water-air interface; X ray photoelectron spectroscopyTitanium dioxideScaffolds (biology)Nano Sphere LithographyNanospherePolystyreneTitania nanosphere
researchProduct

Zvaigžņotā Debess: 2008, Vasara

2008

Latvijas Zinātņu akadēmija, Latvijas Universitāte

Zenta Alksne – 80Arturs Balklavs-Grīnhofs „Mūsdienu zinātne un Dievs”Krustvārdu mīklaPatomas krāteris un Tunguskas meteorītsInterneta resursi – kosmosa kuģi astronomiskās parādībasAndrejs Alksnis – 80Leonora Roze – 80Miķelis Gailis – 90LU AI Astrofizikas observatorijā atklātie asteroīdiZvaigžņotā debess 2008. gada vasarāSEAC/ISAAC konference KlaipēdāLU profesors Boriss Bružs (1897–1987)Baldones observatorijas astronomisko uzņēmumu digitalizācija„Zvaigžņotās Debess” redakcijas kolēģijas sēdeAuksts brūnais pundurisLu Ģeodēzijas un ģeoinformātikas institūta direktors profesors Jānis BalodisMarss – putekļu lavīnasIzolds PustiļņiksStarptautiskais Astronomijas gads 2009Seno austrāliešu astronomija«Zvaigžņotā Debess» – divsimtais numursZvaigznes un katakombasVisums filatēlijāMūžīgais kalendārs – „perfokarte”Jelgavas Pētera akadēmijas observatorija – 225Galaktikas M31 novas – fotogrāfiskie novērojumiK.Žiglevica observatorija – 100LVU Laika dienestsEiropas Astronomijas biedrība - seminārs LeidenēLatvju Dainas par mūžīgo kalendāruIvars ŠmeldsMarsa mobilie roboti – Spirit OpportunityV.Zlatinska observatorija – 100COROT – citplanētasJaunākie ieguvumi “Zvaigžņotās Debess” bibliotēkāValzivs Miras asteLatvijas 58. matemātikas olimpiāde – uzdevumi
researchProduct

Volejbols Latvijas Universitātē

2019

2019. gadā, sagaidot augstskolas 100. jubileju, Latvijas Universitātes Bibliotēka izveidoja virtuālo izstādi “Pēc mirkļa 100 gadi: LU Sports”. Publikācija “Volejbols Latvijas Universitātē” izstrādāta apkopojot šīs izstādes materiālus un veltīta vienam no sporta veidiem – volejbolam. Rakstā atspoguļota volejbola attīstība no LU dibināšanas 1919. gadā līdz 2018.gadam, aprakstot būtiskākos sasniegumus un ievērojamākos sportistus.

Zigismunds Grigoļunovičs - Volejbols - Latvijas UniversitāteSporta vēsture - Latvijas UniversitātePludmales volejbols - Latvijas UniversitāteInguna Minusa - Volejbols - Latvijas UniversitāteUniversitātes sports:INTERDISCIPLINARY RESEARCH AREAS::Sports [Research Subject Categories]Leopolds Kovals - Volejbols - Latvijas UniversitāteUldis Ģērmanis - Volejbols - Latvijas UniversitāteVolejbols - Latvijas UniversitāteInga Pūliņa - Volejbols - Latvijas Universitāte
researchProduct

Building Anosov flows on $3$–manifolds

2014

We prove a result allowing to build (transitive or non-transitive) Anosov flows on 3-manifolds by gluing together filtrating neighborhoods of hyperbolic sets. We give several applications; for example: 1. we build a 3-manifold supporting both of a transitive Anosov vector field and a non-transitive Anosov vector field; 2. for any n, we build a 3-manifold M supporting at least n pairwise different Anosov vector fields; 3. we build transitive attractors with prescribed entrance foliation; in particular, we construct some incoherent transitive attractors; 4. we build a transitive Anosov vector field admitting infinitely many pairwise non-isotopic trans- verse tori.

[ MATH ] Mathematics [math]Pure mathematicsAnosov flowMathematics::Dynamical Systems3–manifolds[ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)$3$–manifolds01 natural sciencesFoliationsSet (abstract data type)MSC: Primary: 37D20 Secondary: 57M9957M99Diffeomorphisms0103 physical sciencesAttractorFOS: Mathematics0101 mathematics[MATH]Mathematics [math]Mathematics - Dynamical SystemsManifoldsMathematics::Symplectic Geometry3-manifold37D20 57MMathematicsTransitive relation37D20010308 nuclear & particles physics010102 general mathematicsTorusMathematics::Geometric TopologyFlow (mathematics)Anosov flowsFoliation (geology)Vector fieldhyperbolic plugsGeometry and Topologyhyperbolic basic set3-manifold
researchProduct

On the classification of Kim and Kostrikin manifolds

2006

International audience; We completely classify the topological and geometric structures of some series of closed connected orientable 3-manifolds introduced by Kim and Kostrikin in [20, 21] as quotient spaces of certain polyhedral 3-cells by pairwise identifications of their boundary faces. Then we study further classes of closed orientable 3-manifolds arising from similar polyhedral schemata, and describe their topological properties.

[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]3-manifolds; group presentations; spines; orbifolds; polyhedral schemata; branched coveringsAlgebra and Number TheorySeries (mathematics)010102 general mathematicsBoundary (topology)spines0102 computer and information sciences01 natural sciencesgroup presentations3-manifoldsCombinatoricspolyhedral schemata010201 computation theory & mathematics[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]Pairwise comparisonorbifoldsbranched coverings0101 mathematicsQuotient[MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT]Mathematics
researchProduct

3-manifolds which are orbit spaces of diffeomorphisms

2008

Abstract In a very general setting, we show that a 3-manifold obtained as the orbit space of the basin of a topological attractor is either S 2 × S 1 or irreducible. We then study in more detail the topology of a class of 3-manifolds which are also orbit spaces and arise as invariants of gradient-like diffeomorphisms (in dimension 3). Up to a finite number of exceptions, which we explicitly describe, all these manifolds are Haken and, by changing the diffeomorphism by a finite power, all the Seifert components of the Jaco–Shalen–Johannson decomposition of these manifolds are made into product circle bundles.

[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]Seifert fibrationsClass (set theory)Pure mathematicsGradient-like diffeomorphism[ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS]Dimension (graph theory)[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]Space (mathematics)01 natural sciences[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]0103 physical sciencesAttractorJaco–Shalen–Johannson decomposition0101 mathematicsFinite setMathematics::Symplectic Geometry[MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT]Mathematics010102 general mathematicsMathematical analysisMathematics::Geometric Topology3-manifoldsProduct (mathematics)010307 mathematical physicsGeometry and TopologyDiffeomorphismOrbit (control theory)
researchProduct