Search results for "OPERATIONS"
showing 10 items of 1692 documents
Influence of processing parameters and initial temper on Friction Stir Extrusion of 2050 aluminum alloy
2017
Abstract Friction Stir Extrusion is an innovative production technology that enables direct wire production via consolidation and extrusion of metal chips or solid billets. During the process, a rotating die is plunged into a cylindrical chamber containing the material to be extruded. The stirring action of the tool produces plastic flow in the extrusion chamber, densifying and heating the charge so that finally, fully dense rods are extruded. Experiments have been carried out in order to investigate the influence of process parameters and initial temper of the base material on the process variables and on the extrudates’ mechanical properties.
Friction stir extrusion to recycle aluminum alloys scraps: Energy efficiency characterization
2019
Abstract Solid state recycling refers to a group of processes allowing direct recycling of metals scraps into semi-finished product. Their main advantage lies in avoiding the molten state of the material which badly affects the environmental performance of the conventional (remelting based) recycling routes. It is expected that such process category would lower the environmental performance of metals recycling. In this paper, the friction stir extrusion process for aluminum alloy AA 2050 wire production is analyzed under the primary energy demand perspective. The process electrical energy demand is quantified with varying process parameters. An empirical modelling approach was applied and a…
Application of linear friction welding for joining ultrafine grained aluminium
2020
Abstract Ultrafine grained (UFG) materials are of great potential in industry due to their enhanced mechanical strength and other promising features, such as ability to superplastic deformation or excellent corrosion resistance. Nevertheless, one of the main limitations lies in their low thermal stability, which leads to excessive grain growth at elevated temperature. It influences mainly further processes performed at high temperature, such as joining. It causes detrimental problems during conventional fusion welding, as significant grain growth is observed and therefore the advantages as a result of small average grain size disappear. Therefore, the idea of applying solid state joining pr…
Decorous combinatorial lower bounds for row layout problems
2020
Abstract In this paper we consider the Double-Row Facility Layout Problem (DRFLP). Given a set of departments and pairwise transport weights between them the DRFLP asks for a non-overlapping arrangement of the departments along both sides of a common path such that the weighted sum of the center-to-center distances between the departments is minimized. Despite its broad applicability in factory planning, only small instances can be solved to optimality in reasonable time. Apart from this even deriving good lower bounds using existing integer programming formulations and branch-and-cut methods is a challenging problem. We focus here on deriving combinatorial lower bounds which can be compute…
Mathematical models for a cutting problem in the glass manufacturing industry
2021
Abstract The glass cutting problem proposed for the ROADEF 2018 challenge is a two-dimensional, three-stage guillotine cutting process, with an additional cut to obtain pieces in some specific situations. However, it is not a standard problem because it includes specific constraints. The sheets produced in the glass manufacturing process have defects that make them different and have to be used in order. The pieces to be cut are grouped into subsets and the pieces from each subset must be cut in order. We approach the problem by developing and solving integer linear models. We start with the basic model, which includes the essential features of the problem, as a classical three-stage cuttin…
Sampled Fictitious Play on Networks
2019
We formulate and solve the problem of optimizing the structure of an information propagation network between multiple agents. In a given space of interests (e.g., information on certain targets), each agent is defined by a vector of their desirable information, called filter, and a vector of available information, called source. The agents seek to build a directed network that maximizes the value of the desirable source-information that reaches each agent having been filtered en route, less the expense that each agent incurs in filtering any information of no interest to them. We frame this optimization problem as a game of common interest, where the Nash equilibria can be attained as limit…
A strategic oscillation simheuristic for the Time Capacitated Arc Routing Problem with stochastic demands
2021
Abstract The Time Capacitated Arc Routing Problem (TCARP) extends the classical Capacitated Arc Routing Problem by considering time-based capacities instead of traditional loading capacities. In the TCARP, the costs associated with traversing and servicing arcs, as well as the vehicle’s capacity, are measured in time units. The increasing use of electric vehicles and unmanned aerial vehicles, which use batteries of limited duration, illustrates the importance of time-capacitated routing problems. In this paper, we consider the TCARP with stochastic demands, i.e.: the actual demands on each edge are random variables which specific values are only revealed once the vehicle traverses the arc. …
Meta-heuristic Algorithms for Nesting Problem of Rectangular Pieces
2017
Abstract Nesting problems consist of placing multiple items onto larger shapes finding a good arrangement. The goal of the nesting process is to minimize the waste of material. It is common to assume, as in the present work, that the stock sheet has fixed width and infinite height, since in the real world a company may have to cut pieces from a roll of material. The complexity of such problems is often faced with a two-stage approach, so-called “hybrid algorithm”, combining a placement routine and a meta-heuristic algorithm. Starting from a given positioning sequence, the placement routine generates a non-overlapping configuration. The encoded solution is manipulated and modified by the met…
Optimal control of discrete-time interval type-2 fuzzy-model-based systems with D-stability constraint and control saturation
2016
This paper investigates the optimal control problem for discrete-time interval type-2 (IT2) fuzzy systems with pole constraints. An IT2 fuzzy controller is characterized by two predefined functions, and the membership functions and the premise rules of the IT2 fuzzy controller can be chosen freely. The pole assignment is considered, which is constrained in a presented disk region. Based on Lyapunov stability theory, sufficient conditions of asymptotic stability with an H ∞ performance are obtained for the discrete-time IT2 fuzzy model based (FMB) system. Based on the criterion, the desired IT2 state-feedback controller is designed to guarantee that the closed-loop system is asymptotically s…
Metaheuristic procedures for the lexicographic bottleneck assembly line balancing problem
2015
The goal of this work is to develop an improved procedure for the solution of the lexicographic bottleneck variant of the assembly line balancing problem (LB-ALBP). The objective of the LB-ALBP is to minimize the workload of the most heavily loaded workstation, followed by the workload of the second most heavily loaded workstation and so on. This problem-recently introduced to the literature (Pastor, 2011)-has practical relevance to manufacturing facilities. We design, implement and fine-tune GRASP, tabu search (TS) and scatter search (SS) heuristics for the LB-ALBP and show that our procedures are able to obtain solutions of a quality that outperforms previous approaches. We rely on both s…