Search results for "ORBIT"

showing 10 items of 1104 documents

Астрономия. Выпуск 19: Анализ движения небесных тел

1993

В статьях научных трудов представлены методы исследования движения и обработки результатов наблюдений тел Солнечной системы, а также способы управления и автоматизации процессов наблюдения небесных тел.

AstronomyАстрометрия:NATURAL SCIENCES::Physics::Astronomy and astrophysics [Research Subject Categories]OrbitsAstrometryСолнечная системаAstrofizikaAstronomijaАstrophysicsDebess mehānikaCelestial mechanicsНебесная механикаАстрономияОрбитыSolar system
researchProduct

XMM-Newton detection of the 2.1 ms coherent pulsations from IGR J17379-3747

2018

We report on the detection of X-ray pulsations at 2.1 ms from the known X-ray burster IGR J17379-3747 using XMM-Newton. The coherent signal shows a clear Doppler modulation from which we estimate an orbital period of ~1.9 hours and a projected semi-major axis of ~8 lt-ms. Taking into account the lack of eclipses (inclination angle of < 75 deg) and assuming a neutron star mass of 1.4 Msun, we estimated a minimum companion star of ~0.06 Msun. Considerations on the probability distribution of the binary inclination angle make less likely the hypothesis of a main-sequence companion star. On the other hand, the close correspondence with the orbital parameters of the accreting millisecond puls…

Astrophysics::High Energy Astrophysical PhenomenaBrown dwarfFOS: Physical sciencesgeneral; stars: neutron; X-rays: binaries; accretion accretion disks [binaries]AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsEphemeris01 natural sciencesstars: neutronSettore FIS/05 - Astronomia E AstrofisicaMillisecond pulsar0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsEmission spectrum010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsOrbital elementsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)accretion accretion disksAccretion (meteorology)010308 nuclear & particles physicsAstronomy and AstrophysicsOrbital periodX-rays: binarieNeutron starbinaries: generalSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Simulations of stellar/pulsar wind interaction along one full orbit

2012

The winds from a non-accreting pulsar and a massive star in a binary system collide forming a bow-shaped shock structure. The Coriolis force induced by orbital motion deflects the shocked flows, strongly affecting their dynamics. We study the evolution of the shocked stellar and pulsar winds on scales in which the orbital motion is important. Potential sites of non-thermal activity are investigated. Relativistic hydrodynamical simulations in two dimensions, performed with the code PLUTO and using the adaptive mesh refinement technique, are used to model interacting stellar and pulsar winds on scales ~80 times the distance between the stars. The hydrodynamical results suggest the suitable lo…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics01 natural sciencessymbols.namesakePulsar0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsAdaptive mesh refinementTurbulenceAstronomy and AstrophysicsParticle accelerationPlutoStarsLorentz factor13. Climate actionSpace and Planetary ScienceOrbital motionsymbolsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Updated orbital ephemeris of the ADC source X 1822-371: a stable orbital expansion over 40 years

2019

The source X 1822-371 is an eclipsing compact binary system with a period close to 5.57 hr and an orbital period derivative $\dot{P}_{\rm orb}$ of 1.51(7)$\times 10^{-10}$ s s$^{-1}$. The very large value of $\dot{P}_{\rm orb}$ is compatible with a super-Eddington mass transfer rate from the companion star, as suggested by X-ray and optical data. The XMM-Newton observation taken in 2017 allows us to update the orbital ephemeris and verify whether the orbital period derivative has been stable over the last 40 yr. We added to the X-ray eclipse arrival times from 1977 to 2008 two new values obtained from the RXTE and XMM-Newton observations performed in 2011 and 2017, respectively. We estimate…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsDerivativeEphemeris01 natural sciencesEclipseeclipsesLuminosityOrb (astrology)stars: neutronX-rays: binariesSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsSpin (physics)ephemerides010303 astronomy & astrophysicsEclipsePhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsstars: individual: X 1822-371Astronomy and AstrophysicsOrbital periodEphemerideOrbitSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Updating the orbital ephemeris of the dipping source XB 1254-690 and the distance to the source

2017

XB 1254-690 is a dipping low mass X-ray binary system hosting a neutron star and showing type I X-ray bursts. We aim at obtaining more accurate orbital ephemeris and at constraining the orbital period derivative of the system for the first time. In addition, we want to better constrain the distance to the source in order to locate the system in a well defined evolutive scenario. We apply for the first time an orbital timing technique to XB 1254-690, using the arrival times of the dips present in the light curves that have been collected during 26 years of X-ray pointed observations performed from different space missions. We estimate the dip arrival times using a statistical method that wei…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesLagrangian pointAstrophysicsStar (graph theory)Ephemeris01 natural sciencesstars: neutron0103 physical sciencesX-rays: star010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsstars: individual (XB 1254690)Astronomy and AstrophysicsQuadratic functionAstronomy and AstrophysicOrbital periodLight curveX-rays: binarieAstrometry and celestial mechanics: ephemerideNeutron starSpace and Planetary Scienceephemerides; stars: individual (XB 1254690); stars: neutron; X-rays: binaries; X-rays: stars; Astronomy and Astrophysics; Space and Planetary Science [Astrometry and celestial mechanics]Astrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaLow Mass
researchProduct

Evidence of a non-conservative mass transfer for XTE J0929-314

2017

Context. In 1998 the first accreting millisecond pulsar, SAX J1808.4-3658, was discovered and to date 18 systems showing coherent, high frequency (> 100 Hz) pulsations in low mass X-ray binaries are known. Since their discovery, this class of sources has shown interesting and sometimes puzzling behaviours. In particular, apart from a few exceptions, they are all transient with very long X-ray quiescent periods implying a quite low averaged mass accretion rate onto the neutron star. Among these sources, XTE J0929-314 has been detected in outburst just once in about 15 years of continuous monitoring of the X-ray sky. Aims. We aim to demonstrate that a conservative mass transfer in this sys…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesStars: individual: XTE J0929-314AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesLuminosityPulsarMillisecond pulsar0103 physical sciencesX-rays: star010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsGravitational waveAstronomy and AstrophysicsAstronomy and AstrophysicGalactic planeOrbital periodX-rays: binarieStars: neutronGalaxyNeutron starSpace and Planetary Scienceindividual: XTE J0929-314; Stars: neutron; X-rays: binaries; X-rays: stars; Astronomy and Astrophysics; Space and Planetary Science [Stars]Astrophysics - High Energy Astrophysical Phenomena
researchProduct

SAX J1808.4-3658, an accreting millisecond pulsar shining in gamma rays?

2016

We report the detection of a possible gamma-ray counterpart of the accreting millisecond pulsar SAX J1808.4-3658. The analysis of ~6 years of data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope (Fermi-LAT) within a region of 15deg radius around the position of the pulsar reveals a point gamma-ray source detected at a significance of ~6 sigma (Test Statistic TS = 32), with position compatible with that of SAX J1808.4-3658 within 95% Confidence Level. The energy flux in the energy range between 0.6 GeV and 10 GeV amounts to (2.1 +- 0.5) x 10-12 erg cm-2 s-1 and the spectrum is well-represented by a power-law function with photon index 2.1 +- 0.1. We searched for si…

Astrophysics::High Energy Astrophysical PhenomenaPulsar planetEnergy fluxFOS: Physical sciencesGamma-rays: starAstrophysics01 natural sciencesBinary pulsarSettore FIS/05 - Astronomia E AstrofisicaSpitzer Space TelescopePulsarMillisecond pulsar0103 physical sciences010303 astronomy & astrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsAstronomyAstronomy and AstrophysicsStars: neutronStars: individual: SAX J1808.4-3658Space and Planetary ScienceOrbital motionstars; Stars: individual: SAX J1808.4-3658; Stars: neutron; Space and Planetary Science; Astronomy and Astrophysics [Gamma-rays]Astrophysics - High Energy Astrophysical PhenomenaFermi Gamma-ray Space Telescope
researchProduct

Simulation of Future Geostationary Ocean Color Images

2012

The objective of this work is to simulate global images that would be provided by a theoretical ocean color sensor on a geostationary orbit at longitude 0, in order to assess the range of radiance value data reaching the sensor throughout the day for 20 spectral bands similar to those of the Ocean and Land Color Imager (OLCI). The secondary objective is to assess the illumination and viewing geometries that result in sunglint. For this purpose, we combined a radiative transfer model for ocean waters (Hydrolight) and a radiative transfer model for atmosphere (MODTRAN) to construct the simulated radiance images at the sea surface and at the Top-Of-Atmosphere (TOA). Bio-optical data from GlobC…

Atmospheric Science010504 meteorology & atmospheric sciencesMeteorologyMODTRANSolar zenith angleSunglint01 natural sciences010309 opticsAtmospheric radiative transfer codes13. Climate actionOcean color0103 physical sciencesGeostationary orbitRadianceEnvironmental scienceComputers in Earth Sciences[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingComputingMilieux_MISCELLANEOUSZenith0105 earth and related environmental sciencesRemote sensingIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
researchProduct

A spatially consistent downscaling approach for SMOS using an adaptive window

2017

The European Space Agency (ESA)'s Soil Moisture and Ocean Salinity (SMOS) is the first spaceborne mission using L-band radiometry to monitor the Earth's global surface soil moisture (SM). After more than 7 years in orbit, many studies have contributed to improve the quality and applicability of SMOS-derived SM maps. In this research, a novel downscaling algorithm for SMOS is proposed to obtain high-resolution (HR) SM maps at 1 km (L4), from the ∼40 km native resolution of the instrument. This algorithm introduces the concept of a shape adaptive moving window as an improvement of the current semi-empirical downscaling approach at SMOS Barcelona Expert Center, based on the “universal triangle…

Atmospheric ScienceBrightnessTeledeteccióMean squared error010504 meteorology & atmospheric sciencesREMEDHUS0211 other engineering and technologiesHigh resolution02 engineering and technology01 natural sciencesNormalized Difference Vegetation IndexBECComputers in Earth SciencesImage resolution021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingNative resolutionAdaptive moving windowLow resolutionMoving windowRemote sensing:Enginyeria de la telecomunicació::Radiocomunicació i exploració electromagnètica::Teledetecció [Àrees temàtiques de la UPC]Orbit (dynamics)RadiometryEnvironmental scienceSpatial variabilitySoil moistureSòls -- HumitatDownscalingSMOS
researchProduct

The surface shortwave net flux from the scanner for radiation budget (SCARAB)

2002

Abstract Shortwave surface net radiation is usually determined by combining the measurement of insolation with an independent estimate of surface albedo. However, uncertainties associated with each of these quantities may lead to large errors in the value of net surface solar radiation. An alternative approach is to deduce the net solar flux (the term flux is used here as the radiometric quantity flux density) at the surface directly from the budget at the top of the atmosphere, without explicit knowledge of surface albedo. The Satellite Application Facility on Climate Monitoring is a joint project of the German Meteorological Service and other European Meteorological Services dedicated to …

Atmospheric ScienceMeteorologyPolar orbitAerospace EngineeringFluxAstronomy and AstrophysicsContext (language use)AlbedoAtmosphereNet radiometerGeophysicsSpace and Planetary ScienceGeneral Earth and Planetary SciencesEnvironmental scienceSatelliteAstrophysics::Earth and Planetary AstrophysicsShortwavePhysics::Atmospheric and Oceanic PhysicsRemote sensingAdvances in Space Research
researchProduct