Search results for "OSCILLATOR"

showing 10 items of 271 documents

Harmonic oscillator model for the atom-surface Casimir-Polder interaction energy

2012

In this paper we consider a quantum harmonic oscillator interacting with the electromagnetic radiation field in the presence of a boundary condition preserving the continuous spectrum of the field, such as an infinite perfectly conducting plate. Using an appropriate Bogoliubov-type transformation we can diagonalize exactly the Hamiltonian of our system in the continuum limit and obtain non-perturbative expressions for its ground-state energy. From the expressions found, the atom-wall Casimir-Polder interaction energy can be obtained, and well-know lowest-order results are recovered as a limiting case. Use and advantage of this method for dealing with other systems where perturbation theory …

PhysicsQuantum PhysicsAtom-field interactionsAnharmonicityContinuous spectrumFOS: Physical sciencesInteraction energyAtomic and Molecular Physics and OpticsCasimir effectsymbols.namesakeCasimir-Polder energyQuantum harmonic oscillatorQuantum mechanicssymbolsBoundary value problemQuantum Physics (quant-ph)Hamiltonian (quantum mechanics)Harmonic oscillatorPhysical Review A
researchProduct

Spin Heat Engine Coupled to a Harmonic-Oscillator Flywheel

2018

We realize a heat engine using a single electron spin as a working medium. The spin pertains to the valence electron of a trapped $^{40}$Ca$^+$ ion, and heat reservoirs are emulated by controlling the spin polarization via optical pumping. The engine is coupled to the ion's harmonic-oscillator degree of freedom via spin-dependent optical forces. The oscillator stores the work produced by the heat engine and therefore acts as a flywheel. We characterize the state of the flywheel by reconstructing the Husimi $\mathcal{Q}$ function of the oscillator after different engine runtimes. This allows us to infer both the deposited energy and the corresponding fluctuations throughout the onset of oper…

PhysicsQuantum PhysicsWork (thermodynamics)Spin polarizationGeneral Physics and AstronomyFOS: Physical sciences01 natural sciences7. Clean energyFlywheelOptical pumping0103 physical sciencesAtomic physics010306 general physicsGround stateQuantum Physics (quant-ph)Harmonic oscillatorSpin-½Heat enginePhysical Review Letters
researchProduct

Estimation of Granger causality through Artificial Neural Networks: applications to physiological systems and chaotic electronic oscillators

2021

One of the most challenging problems in the study of complex dynamical systems is to find the statistical interdependencies among the system components. Granger causality (GC) represents one of the most employed approaches, based on modeling the system dynamics with a linear vector autoregressive (VAR) model and on evaluating the information flow between two processes in terms of prediction error variances. In its most advanced setting, GC analysis is performed through a state-space (SS) representation of the VAR model that allows to compute both conditional and unconditional forms of GC by solving only one regression problem. While this problem is typically solved through Ordinary Least Sq…

Artificial neural networks; Chaotic oscillators; Granger causality; Multivariate time series analysis; Network physiology; Penalized regression techniques; Remote synchronization; State-space models; Stochastic gradient descent L1; Vector autoregressive modelGeneral Computer ScienceDynamical systems theoryComputer science02 engineering and technologyChaotic oscillatorsPenalized regression techniquesNetwork topologySettore ING-INF/01 - ElettronicaMultivariate time series analysisVector autoregression03 medical and health sciences0302 clinical medicineScientific Computing and Simulation0202 electrical engineering electronic engineering information engineeringRepresentation (mathematics)Optimization Theory and ComputationNetwork physiologyState-space modelsArtificial neural networkArtificial neural networksData ScienceTheory and Formal MethodsQA75.5-76.95Stochastic gradient descent L1Granger causality State-space models Vector autoregressive model Artificial neural networks Stochastic gradient descent L1 Multivariate time series analysis Network physiology Remote synchronization Chaotic oscillators Penalized regression techniquesRemote synchronizationStochastic gradient descentAutoregressive modelAlgorithms and Analysis of AlgorithmsVector autoregressive modelElectronic computers. Computer scienceSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaGranger causality020201 artificial intelligence & image processingGradient descentAlgorithm030217 neurology & neurosurgeryPeerJ Computer Science
researchProduct

Effect of a zwitterionic surfactant on the dynamics of a pH oscillator

2008

zwitterionic surfactant pH oscillator
researchProduct

Creating highly squeezed vacua in hybrid Laguerre-Gauss modes

2009

In this communication we study the above threshold quantum properties of a degenerate optical parametric oscillator (DOPO) tuned to a given transverse mode family at the signal frequency. We will show that under this configuration DOPOs are versatile sources of nonclassical light, in which one could be able to generate highly squeezed vacua with the non trivial shapes of Hybrid Laguerre-Gauss modes.

PhysicsClassical mechanicsQuantum mechanicsDegenerate energy levelsGaussOptical parametric oscillatorLaguerre polynomialsResonanceNonclassical lightQuantumTransverse mode
researchProduct

Unitary reduction of the Liouville equation relative to a two-level atom coupled to a bimodal lossy cavity

2002

The Liouville equation of a two-level atom coupled to a degenerate bimodal lossy cavity is unitarily and exactly reduced to two uncoupled Liouville equations. The first one describes a dissipative Jaynes-Cummings model and the other one a damped harmonic oscillator. Advantages related to the reduction method are discussed.

PhysicsQuantum PhysicsLiouville equationDegenerate energy levelsFOS: Physical sciencesGeneral Physics and AstronomyAtom (order theory)Mathematics::Spectral TheoryLossy compressionUnitary stateQuantum mechanicsDissipative systemQuantum Physics (quant-ph)Reduction (mathematics)Harmonic oscillatorPhysics Letters A
researchProduct

A Novel Method Of Measuring Light Absorption On A Self-Assembled Single Quantum Dot

2005

Abstract. We present a novel method by wich excitonic interband optical transitions within single InAs self-assembled quantum dots can be directly observed in a transmission experiment. Due to the extremely high resolution of the tecnique, individual peaks associated to single exciton absorption resonances in single quantum dots can be spectrally resolved. Using this technique we investigate the oscillator strength, homogeneous linewidth and fine structure splitting in a collection of such individual resonances.

Physicsbusiness.industryOscillator strengthExcitonCondensed Matter::Mesoscopic Systems and Quantum Hall EffectMolecular physicsSelf assembledLaser linewidthHomogeneousQuantum dotOptoelectronicsFine structureAbsorption (electromagnetic radiation)business
researchProduct

Time-dependent perturbation treatment of independent Raman schemes

2007

The problem of a trapped ion subjected to the action of two or more independent Raman schemes is analysed through a suitable time-dependent perturbative approach based on the factorization of the evolution operator in terms of other unitary operators. We show that the dynamics of the system may be traced back to an effective Hamiltonian up to a suitable dressing. Moreover, we give the method to write the master equation corresponding to the case wherein spontaneous decays occur.

Statistics and ProbabilityPhysicsSettore FIS/02 - Fisica Teorica Modelli E Metodi Matematicisuperposition (mathematics)modesGeneral Physics and AstronomyPerturbation (astronomy)Statistical and Nonlinear PhysicsUnitary stateSettore FIS/03 - Fisica Della MateriaIonsymbols.namesakeharmonic oscillatorOperator (computer programming)FactorizationModeling and SimulationQuantum mechanicsMaster equationsymbolsHamiltonian (quantum mechanics)Raman spectroscopyMathematical PhysicsJournal of Physics A: Mathematical and Theoretical
researchProduct

On the anomalous Stark effect in a thin disc-shaped quantum dot

2010

The effect of a lateral external electric field F on an exciton ground state in an InAs disc-shaped quantum dot has been studied using a variational method within the effective mass approximation. We consider that the radial dimension of the disc is very large compared to its height. This situation leads to separating the excitonic Hamiltonian into two independent parts: the lateral confinement which corresponds to a two-dimensional harmonic oscillator and an infinite square well in the growth direction. Our calculations show that the complete description of the lateral Stark shift requires both the linear and quadratic terms in F which explains that the exciton possess nonzero lateral dipo…

PhysicsCondensed matter physicsExcitonParticle in a boxCondensed Matter PhysicsIndiumArsenicalsNanostructuressymbols.namesakeDipoleElectromagnetic FieldsVariational methodModels ChemicalStark effectPolarizabilityQuantum DotssymbolsQuantum TheoryGeneral Materials ScienceParticle SizeHamiltonian (quantum mechanics)Harmonic oscillatorJournal of Physics: Condensed Matter
researchProduct

Some remarks on few recent results on the damped quantum harmonic oscillator

2020

Abstract In a recent paper, Deguchi et al. (2019), the authors proposed an analysis of the damped quantum harmonic oscillator in terms of ladder operators. This approach was shown to be partly incorrect in Bagarello et al. (2019), via a simple no-go theorem. More recently, (Deguchi and Fujiwara, 2019), Deguchi and Fujiwara claimed that our results in Bagarello et al. (2019) are wrong, and compute what they claim is the square integrable vacuum of their annihilation operators. In this brief note, we show that their vacuum is indeed not a vacuum, and we try to explain what is behind their mistakes in Deguchi et al. (2019) and Deguchi and Fujiwara (2019). We also propose a very simple example …

PhysicsAnnihilation010308 nuclear & particles physicsGeneral Physics and AstronomyDamped quantum harmonic oscillator01 natural sciencesLadder operatorSquare-integrable functionSimple (abstract algebra)Quantum harmonic oscillator0103 physical sciences010306 general physicsSettore MAT/07 - Fisica MatematicaMathematical physicsAnnals of Physics
researchProduct