Search results for "OTI"

showing 10 items of 20628 documents

Identification of conserved genes linked to responses to abiotic stresses in leaves among different plant species

2020

As a consequence of global climate change, certain stress factors that have a negative impact on crop productivity such as heat, cold, drought and salinity are becoming increasingly prevalent. We conducted a meta-analysis to identify genes conserved across plant species involved in (1) general abiotic stress conditions, and (2) specific and unique abiotic stress factors (drought, salinity, extreme temperature) in leaf tissues. We collected raw data and re-analysed eight RNA-Seq studies using our previously published bioinformatic pipeline. A total of 68 samples were analysed. Gene set enrichment analysis was performed using MapMan and PageMan whereas DAVID (Database for Annotation, Visuali…

0106 biological sciences0301 basic medicinePlant ScienceProtein degradationBiologyGenes Plant01 natural sciences03 medical and health scienceschemistry.chemical_compoundGene Expression Regulation PlantStress PhysiologicalSettore AGR/07 - Genetica AgrariaMYBSecondary metabolismAbscisic acidGeneAbiotic componentGeneticsabiotic-stresses differentially expressed genes leaves meta-analysis RNA-Seq transcriptomic.Abiotic stressGene Expression Profilingfungifood and beveragesPlant LeavesSettore AGR/03 - Arboricoltura Generale E Coltivazioni Arboree030104 developmental biologychemistryCinnamoyl-CoA reductaseAgronomy and Crop Science010606 plant biology & botany
researchProduct

Identification of ABA-Mediated Genetic and Metabolic Responses to Soil Flooding in Tomato (

2021

Soil flooding is a compound abiotic stress that alters soil properties and limits atmospheric gas diffusion (O2 and CO2) to the roots. The involvement of abscisic acid (ABA) in the regulation of soil flooding-specific genetic and metabolic responses has been scarcely studied despite its key importance as regulator in other abiotic stress conditions. To attain this objective, wild type and ABA-deficient tomatoes were subjected to short-term (24 h) soil waterlogging. After this period, gas exchange parameters were reduced in the wild type but not in ABA-deficient plants that always had higher E and gs. Transcript and metabolite alterations were more intense in waterlogged tissues, with genoty…

0106 biological sciences0301 basic medicinePlant Sciencelcsh:Plant culturetomatoNitrate reductase01 natural sciencesTomatoabscisic acid03 medical and health scienceschemistry.chemical_compoundAbscisic acidBIOQUIMICA Y BIOLOGIA MOLECULARlcsh:SB1-1110HypoxiaAbscisic acidOriginal ResearchOxidase testbiologyChemistryAbiotic stresshypoxiafungiWild typefood and beveragesMetabolismbiology.organism_classificationSignaling030104 developmental biologyMetabolismBiochemistrySoil floodingsoil floodingSolanumsignalingmetabolism010606 plant biology & botanyWaterlogging (agriculture)Frontiers in plant science
researchProduct

Ammonium acts systemically while nitrate exerts an additional local effect on Medicago truncatula nodules

2020

National audience; Symbiotic nitrogen fixation (SNF) has a high energetic cost for legume plants; legumes thus reduce SNF when soil N is available. The present study aimed to increase our understanding regarding the impacts of the two principal forms of available N in soils (ammonium and nitrate) on SNF. We continuously measured the SNF of Medicago truncatula under controlled conditions. This permitted nodule sampling for comparative transcriptome profiling at points connected to the nodules' reaction following ammonium or nitrate applications. The N component of both ions systemically induced a rhythmic pattern of SNF, while the activity in control plants remained constant. This rhythmic a…

0106 biological sciences0301 basic medicinePlant Sciencenodule activity01 natural sciencesNicotianamine synthaseTranscriptome03 medical and health scienceschemistry.chemical_compoundNitratenitrateRNA seqAmmonium CompoundsMedicago truncatulaGeneticsAmmoniumLeghemoglobinSymbiosisLegumeNitratesbiologyNCR peptidesfungiGeneral MedicineneNASbiology.organism_classificationMedicago truncatula030104 developmental biologychemistryBiochemistrynitrogen fixation[SDE]Environmental SciencesNitrogen fixationbiology.proteinRoot Nodules PlantAgronomy and Crop Science010606 plant biology & botany
researchProduct

Not that clean: Aquaculture-mediated translocation of cleaner fish has led to hybridization on the northern edge of the species' range

2021

Translocation and introduction of non-native organisms can have major impacts on local populations and ecosystems. Nevertheless, translocations are common practices in agri- and aquaculture. Each year, millions of wild-caught wrasses are transported large distances to be used as cleaner fish for parasite control in marine salmon farms. Recently, it was documented that translocated cleaner fish are able to escape and reproduce with local wild populations. This is especially a challenge in Norway, which is the world's largest salmon producer. Here, a panel of 84 informative SNPs was developed to identify the presence of nonlocal corkwing wrasse (Symphodus melops) escapees and admixed individu…

0106 biological sciences0301 basic medicineRange (biology)EvolutionSpecies distributionContext (language use)VDP::Landbruks- og Fiskerifag: 900::Fiskerifag: 920::Akvakultur: 922parasitesCleaner fish010603 evolutionary biology01 natural sciences03 medical and health sciencesAquacultureLabridaesingle nucleotide polymorphismGeneticsQH359-425Ecology Evolution Behavior and SystematicsLocal adaptationhuman‐mediated gene flowbiologybusiness.industryEcologyOriginal Articlesgenetic hybridizationbiology.organism_classification030104 developmental biologyaquacultureWrasseOriginal ArticleGeneral Agricultural and Biological SciencesbusinessCorkwing wrasse
researchProduct

Arbuscular mycorrhizal symbiosis mitigates the negative effects of salinity on durum wheat

2017

Arbuscular mycorrhizal (AM) symbiosis is generally considered to be effective in ameliorating the plant tolerance to salt stress. Unfortunately, the comprehension of the mechanisms implicated in salinity stress alleviation by AM symbiosis is far from being complete. Thus, an experiment was performed by growing durum wheat (Triticum durum Desf.) plants under salt-stress conditions to evaluate the influence of AM symbiosis on both the plant growth and the regulation of a number of genes related to salt stress and nutrient uptake. Durum wheat plants were grown outdoors in pots in absence or in presence of salt stress and with or without AM fungi inoculation. The inoculum consisted of a mixture…

0106 biological sciences0301 basic medicineRhizophagus irregularisSalinityLeavesGene Expressionlcsh:MedicinePlant SciencePlant RootsPolymerase Chain ReactionPhysical Chemistry01 natural sciencesNutrientMycorrhizaePlant Resistance to Abiotic Stresslcsh:ScienceTriticumBiomass (ecology)MultidisciplinaryEcologyPlant Anatomyfood and beveragesSalt TolerancePlantsSettore AGR/02 - Agronomia E Coltivazioni ErbaceeChemistryPlant PhysiologyPhysical SciencesWheatSymbiosiResearch ArticleBiology03 medical and health sciencesSymbiosisSettore AGR/07 - Genetica AgrariaPlant-Environment InteractionsBotanyGeneticsPlant DefensesGene RegulationGrassesSymbiosisBiochemistry Genetics and Molecular Biology (all)InoculationGene Expression ProfilingPlant EcologyEcology and Environmental Scienceslcsh:RfungiOrganismsFungiBiology and Life SciencesPlant RootPlant Pathologybiology.organism_classificationSporeSalinitySpecies Interactions030104 developmental biologyAgricultural and Biological Sciences (all)Chemical PropertiesArbuscular mycorrhizal symbiosislcsh:QSalt-Tolerance010606 plant biology & botanyPLOS ONE
researchProduct

Prebiotic effect of xylooligosaccharides produced from birchwood xylan by a novel fungal GH11 xylanase.

2017

34 p.-4 fig.-1 tab.

0106 biological sciences0301 basic medicineSCFAsBreast-fedStaphylococcus hominisMicroorganismmedicine.medical_treatmentOligosaccharidesXyloseBiologyXylosidase01 natural sciencesAnalytical Chemistry03 medical and health scienceschemistry.chemical_compound010608 biotechnologyXylobiosemedicineGlycoside hydrolaseEndo-14-beta XylanasesPrebioticHydrolysisGeneral MedicineXylanLactic acid030104 developmental biologyPrebioticschemistryBiochemistryTalaromycesXOSXylanaseXylansMicrobiomeBifidobacteriumFood ScienceFood chemistry
researchProduct

Expression properties exhibit correlated patterns with the fate of duplicated genes, their divergence, and transcriptional plasticity in Saccharomyco…

2017

Gene duplication is an important source of novelties and genome complexity. What genes are preserved as duplicated through long evolutionary times can shape the evolution of innovations. Identifying factors that influence gene duplicability is therefore an important aim in evolutionary biology. Here, we show that in the yeast Saccharomyces cerevisiae the levels of gene expression correlate with gene duplicability, its divergence, and transcriptional plasticity. Genes that were highly expressed before duplication are more likely to be preserved as duplicates for longer evolutionary times and wider phylogenetic ranges than genes that were lowly expressed. Duplicates with higher expression lev…

0106 biological sciences0301 basic medicineSaccharomyces cerevisiae ProteinsGene duplicationDuplicabilityPlant Biology & BotanySaccharomyces cerevisiaeSaccharomyces cerevisiae01 natural sciencesDivergenceEvolution Molecular03 medical and health sciencesGenes DuplicateGene Expression Regulation FungalGene expressionGene duplicationGeneticsSelection GeneticSaccharomycotinaPromoter Regions GeneticMolecular BiologyGenePhylogenybiologyPhylogenetic treeGenetic VariationPromoterGeneral MedicineFull Papersbiology.organism_classification030104 developmental biologyEvolutionary biologyTranscriptional plasticityGene expressionGenome Fungal010606 plant biology & botany
researchProduct

Genetic variation and evolutionary analysis ofPepino mosaic virusin Sicily: insights into the dispersion and epidemiology

2017

Pepino mosaic virus (PepMV) is a highly infectious potexvirus that causes a severe disease in tomato (Solanum lycopersicum) crops worldwide. In Sicily, the first outbreak was detected in a single greenhouse in 2005 and it was promptly eradicated. However, in 2008, a large number of greenhouses were simultaneously affected, and it was impossible to eradicate or control the virus. This study addressed the dispersion and the genetic diversity of PepMV isolates obtained from the outbreak in Sicily, in comparison with worldwide PepMV isolates, to gain insight into the factors determining the evolution and epidemiology of the virus. A total of 1800 samples from plants with and without symptoms we…

0106 biological sciences0301 basic medicineSettore AGR/04 - Orticoltura E FloricolturaPlant ScienceHorticulture01 natural sciencesVirusNucleotide diversity03 medical and health sciencesSettore AGR/07 - Genetica AgrariaGenetic variationGeneticsGenetic diversitybiologyPhylogenetic treeSettore AGR/12 - Patologia VegetaleOutbreakdispersion epidemiology genetic diversity PepMVPotexvirusbiology.organism_classificationVirologylanguage.human_language030104 developmental biologylanguageAgronomy and Crop ScienceSicilian010606 plant biology & botanyPlant Pathology
researchProduct

Estimating the genetic diversity and structure ofQuercus trojanaWebb populations in Italy by SSRs: implications for management and conservation

2017

Studying the genetic diversity and structure of the current forest populations is essential for evaluating the ability to survive to future biotic and abiotic changes and planning conservation strategies. Quercus trojana is an eastern Mediterranean tree species with a fragmented distribution range, and its westernmost outposts are located in southern Italy. The demand for timber and cropland over the centuries has severely reduced it s occurrence in this part of the range. We assessed the genetic diversity and structure of the extant Italian populations of Q. trojana and derived conservation guidelines. A total of 322 samples were genotyped with six polymorphic nuclear microsatellite marker…

0106 biological sciences0301 basic medicineSettore AGR/05 - Assestamento Forestale E SelvicolturaQuercus trojana Genetic diversity Population structure SSRs markers ConservationQuercus trojanaRange (biology)PopulationConservationPopulation structure010603 evolutionary biology01 natural sciencesGenetic diversity03 medical and health sciencesQuercus trojanaeducationAbiotic componentQuercus trojana diversité génétique structure de populations marqueurs SSRs conservationGlobal and Planetary ChangeGenetic diversityeducation.field_of_studySSRs markersEcologybiologyEcologyForestrybiology.organism_classification030104 developmental biologyMicrosatelliteGene poolSpecies richnessCanadian Journal of Forest Research
researchProduct

RNA uridylation and decay in plants

2018

RNA uridylation consists of the untemplated addition of uridines at the 3′ extremity of an RNA molecule. RNA uridylation is catalysed by terminal uridylyltransferases (TUTases), which form a subgroup of the terminal nucleotidyltransferase family, to which poly(A) polymerases also belong. The key role of RNA uridylation is to regulate RNA degradation in a variety of eukaryotes, including fission yeast, plants and animals. In plants, RNA uridylation has been mostly studied in two model species, the green algae Chlamydomonas reinhardtii and the flowering plant Arabidopsis thaliana . Plant TUTases target a variety of RNA substrates, differing in size and function. These RNA substrates include …

0106 biological sciences0301 basic medicineSmall interfering RNATerminal nucleotidyltransferaseRNA StabilitymRNAArabidopsisChlamydomonas reinhardtiiUridylationBiology01 natural sciencesRNA decayGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesRNA degradationSettore AGR/07 - Genetica AgrariamicroRNAGene silencing[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyUridineComputingMilieux_MISCELLANEOUSPolymerase2. Zero hungerMessenger RNABiochemistry Genetics and Molecular Biology (all)fungiRNAfood and beverages[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyArticlesPlantsRibosomal RNAbiology.organism_classificationCell biology030104 developmental biologyAgricultural and Biological Sciences (all)biology.proteinRNARNA InterferenceGeneral Agricultural and Biological SciencesChlamydomonas reinhardtii010606 plant biology & botany
researchProduct