Search results for "Oat"

showing 10 items of 4347 documents

Growth of WC–Cr–N and WC–Al–N coatings in a RF-magnetron sputtering process

2013

Tungsten carbide-based coatings have been used in a wide variety of industrial applications such as high speed cutting tools, extrusion dies, drills, aerospace industries, and more. A few reports on ternary and quaternary coatings of WC with other elements indicate good prospects for these material systems. The present study focuses on the formation of quaternary WCeCreN and WCeAleN coatings during the simultaneous reactive RF-magnetron sputtering of tungsten carbide and Al or Cr targets in an argon/nitrogen gas mixture. The resulting coatings, with thicknesses of 3.5 mme8.2 mm, were characterized by using several analytical techniques including X-ray diffraction, SEM/EDS, AFM, and X-ray ph…

010302 applied physicsMaterials scienceMetallurgychemistry.chemical_element02 engineering and technologySputter depositionNitrideTungsten021001 nanoscience & nanotechnologyCondensed Matter PhysicsMicrostructure01 natural sciencesSurfaces Coatings and FilmsAmorphous solidchemistry.chemical_compoundchemistrySputteringTungsten carbide0103 physical sciencesThin film0210 nano-technologyInstrumentationVacuum
researchProduct

Deposition of hollow sphere In2O3 coatings by liquid flame spray

2019

Hollow sphere In(OH)3 coatings were deposited by a simple liquid flame spray with hollow sphere In(OH)3 suspension, which was synthesized by improved soft template methods. The morphology of the In...

010302 applied physicsMaterials scienceMorphology (linguistics)02 engineering and technologySurfaces and Interfaces021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSurfaces Coatings and FilmsChemical engineering0103 physical sciencesMaterials ChemistryDeposition (phase transition)0210 nano-technologyThermal sprayingSuspension (vehicle)Surface Engineering
researchProduct

Optimization of physicochemical and optical properties of nanocrystalline TiO 2 deposited on porous silicon by metal-organic chemical vapor depositio…

2020

International audience; Titanium dioxide (TiO2) is very employed in solar cells due to its interesting physicochemical and optical properties allowing high device performances. Considering the extension of applications in nanotechnologies, nanocrystalline TiO2 is very promising for nanoscale components. In this work, nanocrystalline TiO2 thin films were successfully deposited on porous silicon (PSi) by metal organic chemical vapor deposition (MOCVD) technique at temperature of 550°C for different periods of times: 5, 10 and 15 min. The objective was to optimize the physicochemical and optical properties of the TiO2/PSi films dedicated for photovoltaic application. The structural, morphologi…

010302 applied physicsMaterials sciencePolymers and PlasticsMetals and Alloys02 engineering and technologyChemical vapor deposition021001 nanoscience & nanotechnologyPorous silicon01 natural sciences7. Clean energyNanocrystalline materialSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsBiomaterialsMetalChemical engineeringvisual_art0103 physical sciencesvisual_art.visual_art_medium[INFO]Computer Science [cs]Metalorganic vapour phase epitaxy0210 nano-technology[CHIM.CHEM]Chemical Sciences/Cheminformatics
researchProduct

Continuous hydrothermal synthesis in supercritical conditions as a novel process for the elaboration of Y-doped BaZrO3

2021

Abstract The present work describes a novel process for the elaboration of a ceramic material. Y-doped barium zirconate, an electrolyte material for Protonic Ceramic Fuel cell, was synthesized by a continuous hydrothermal process in supercritical conditions (410 °C/30.0 MPa) using nitrate precursors and NaOH reactants. The use of supercritical water allowed the formation of particles of about 50 nm in diameter with a narrow size distribution. X-Ray Diffraction examination revealed that a major perovskite phase with few BaCO3 and YO(OH) impurities was obtained. BaCO3 is assumed to form due to faster kinetics than Y-doped BaZrO3 resulting in a Ba-deficient perovskite phase. The Ba-deficiency …

010302 applied physicsMaterials scienceProcess Chemistry and Technologychemistry.chemical_element02 engineering and technologyYttrium021001 nanoscience & nanotechnology01 natural sciencesHydrothermal circulationSupercritical fluidSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialschemistryChemical engineeringProtonic ceramic fuel cellPhase (matter)visual_art0103 physical sciencesMaterials ChemistryCeramics and Compositesvisual_art.visual_art_mediumHydrothermal synthesisCeramic0210 nano-technologyPerovskite (structure)Ceramics International
researchProduct

Fabrication and characterization of low cost Cu 2 O/ZnO:Al solar cells for sustainable photovoltaics with earth abundant materials

2016

Abstract The low cost electrodeposition method was used to grow Cu2O thin films and experimentally determine the optimal absorber layer thickness. Raman scattering studies indicate the presence of solely crystalline Cu2O and SEM images show that the thin films consist of grains with a pyramidal shape. The influence of the thickness of the light absorbing Cu2O layer on the basic characteristic of the heterojunction and their properties have been investigated using reflectivity, current–voltage (J–V), capacitance–voltage (C–V) and the external quantum efficiency (EQE) measurements. The depletion layer, the charge collection length of the minority carrier, and reflectivity are the main factors…

010302 applied physicsMaterials scienceRenewable Energy Sustainability and the Environmentbusiness.industryOpen-circuit voltageHeterojunction02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialslaw.inventionOpticsDepletion regionlawPhotovoltaics0103 physical sciencesSolar cellOptoelectronicsQuantum efficiencyThin film0210 nano-technologybusinessShort circuitSolar Energy Materials and Solar Cells
researchProduct

Evaluation of nano/submicro pores in suspension plasma sprayed YSZ coatings

2019

Abstract Nano-submicro pores could considerably influence the coating performances and thus should be properly designed for the intended applications. However, it is challenging to characterize accurately such small pores in coatings. In this study, YSZ coatings were firstly manufactured by suspension plasma spray (SPS) and the nano-submicro pores in as-prepared coatings were investigated using Ultra-small-angle X-ray scattering (USAXS). Afterwards, a multivariate analysis on the effect of five different process parameters was carried out. The two main results showed that: 1) the nano-submicro pores content in coatings has a negative correlation with suspension mass load and powder size, an…

010302 applied physicsMaterials scienceScatteringSintering02 engineering and technologySurfaces and InterfacesGeneral ChemistrySurface finishengineering.materialCondensed Matter Physics01 natural sciencesSurfaces Coatings and Films[SPI]Engineering Sciences [physics]020303 mechanical engineering & transports0203 mechanical engineeringCoating0103 physical sciencesNano-Materials ChemistryengineeringSuspension plasma sprayComposite materialSuspension (vehicle)Yttria-stabilized zirconiaSurface and Coatings Technology
researchProduct

HCl gas gettering of low-cost silicon

2013

HCl gas gettering is a cheap and simple technique to reduce transition metal concentrations in silicon. It is attractive especially for low-cost silicon materials like upgraded metallurgical grade (UMG) silicon, which usually contain 3d transition metals in high concentrations. Etching of silicon by HCl gas occurs during HCl gas gettering above a certain onset temperature. The etching rate as well as the gettering efficiency was experimentally determined as a function of the gettering temperature, using UMG silicon wafers. The activation energy of the etching reaction by HCl gas was calculated from the obtained data. The gettering efficiency was determined by analyzing Ni as a representativ…

010302 applied physicsMaterials scienceSiliconEtching rateInorganic chemistrychemistry.chemical_element02 engineering and technologySurfaces and InterfacesActivation energy021001 nanoscience & nanotechnologyCondensed Matter Physics7. Clean energy01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialschemistryTransition metalGetterEtching (microfabrication)0103 physical sciencesMaterials ChemistryWaferElectrical and Electronic Engineering0210 nano-technologyInductively coupled plasma mass spectrometryphysica status solidi (a)
researchProduct

Thermal stability of magnetic characteristics of Co/Ag/Fe and Co/Ag/Fe20Ni80 spin-valve structures

2017

Abstract We investigated the thermal stability of magnetic characteristics of Co/Ag/Fe and Co/Ag/Fe 20 Ni 80 spin-valve structures. Thin film systems were obtained with the help of sputtering method. For the first type of systems two particular thicknesses ( d ML  = 3 and 20 nm) and different disposition of magnetic layers (ML) were used. For the second type different thickness of Ag ( d NML ) spacer layer was used. The research of the crystal structure was performed with the transmission electron microscope. The results demonstrate that every investigated as-deposited sample does not include solid solutions, intermetallic compounds or impurities. It has been found that among the spin-valve…

010302 applied physicsMaterials scienceSpin valveIntermetallicAnalytical chemistry02 engineering and technologyCoercivity021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSurfaces Coatings and FilmsNuclear magnetic resonanceImpuritySputtering0103 physical sciencesThermal stabilityThin film0210 nano-technologyInstrumentationSolid solutionVacuum
researchProduct

Effect of oxidation post treatments on TiO2 coating manufactured using reactive very low-pressure plasma spraying (R-VLPPS)

2020

Abstract TiO2 coatings manufactured using reactive very low-pressure plasma spraying (R-VLPPS) were analyzed in different regions related to their position compared to the plasma flame. For that, a screen was used in order to hide an area of the substrate from the direct plasma flux. The coating morphology changed from quasi lamellar structure to highly vapor structure and coatings exhibited obvious modifications in terms of phases and mechanical properties. The effect of oxidation post treatment on the as sprayed coating was then studied by selecting two methods: in situ oxidation post treatment and classical thermal treatment. The two post treatments provided an increase of the main rutil…

010302 applied physicsMaterials scienceSubstrate (chemistry)02 engineering and technologySurfaces and InterfacesGeneral ChemistryPlasmaThermal treatmentengineering.material021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSurfaces Coatings and Films[SPI]Engineering Sciences [physics]CoatingRutilePhase (matter)0103 physical sciencesMaterials ChemistryengineeringLamellar structureComposite material0210 nano-technologyPorositySurface and Coatings Technology
researchProduct

Reducing the Schottky barrier height at the MoSe2/Mo(110) interface in thin-film solar cells: Insights from first-principles calculations

2016

Abstract We report on first-principles calculations of the properties of the MoSe2/Mo(110) interface. Due to mismatch between the lattice parameters of the two structures, different patterns can form at the interface. We have studied the formation energy and the band alignment of six patterns for the MoSe2 (0001)/Mo(110) interface and one pattern for the MoSe2 (11 2 0)/Mo(110) interface. The MoSe2 (11 2 0)/Mo(110) interface is more stable than the MoSe 2 (0001)/Mo(110) interface and in contrast to MoSe2 (0001)/Mo(110), no Schottky barrier forms at MoSe2 (11 2 0)/Mo(110). Doping with Na modifies the band alignment at the interfaces. The Schottky barrier height decreases, provided that a Na a…

010302 applied physicsMaterials science[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]Schottky barriercu(InDopingMetals and Alloys02 engineering and technologySurfaces and InterfacesInterface[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]021001 nanoscience & nanotechnology01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCrystallographyGa)Se 2MoSe2/Mo(110)Lattice (order)0103 physical sciencesMaterials ChemistryThin film solar cellThin-film solar cell0210 nano-technologySchottky barrier
researchProduct