Search results for "Octave"

showing 10 items of 12 documents

Filament-induced visible-to-mid-IR supercontinuum in a ZnSe crystal: Towards multi-octave supercontinuum absorption spectroscopy

2016

Abstract We report on the generation of multiple-octave supercontinuum laser source spanning from 0.5 μm to 11 μm induced by multi-filamentation in a ZnSe crystal. The generated supercontinuum is both spatially and spectrally characterized. It is then exploited in a proof-of-principle experiment for methane spectroscopy measurements by means of the supercontinuum absorption spectroscopy technique. The entire absorption spectrum is successfully recorded within the whole spectral bandwidth of the supercontinuum. Experimental results are in fairly good agreement with the HITRAN database, confirming the reliability and stability over several hours of the generated supercontinuum.

Materials scienceAbsorption spectroscopybusiness.industryOrganic Chemistry02 engineering and technology021001 nanoscience & nanotechnologyOctave (electronics)01 natural sciencesAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsSupercontinuum010309 opticsInorganic ChemistryCrystalProtein filamentOptics0103 physical sciencesOptoelectronicsHITRANElectrical and Electronic EngineeringPhysical and Theoretical Chemistry0210 nano-technologySpectroscopybusinessSpectroscopyOptical Materials
researchProduct

Octave-spanning ultraflat supercontinuum with soft-glass photonic crystal fibers

2009

We theoretically identify some photonic-crystal-fiber structures, made up of soft glass, that generate ultrawide (over an octave) and very smooth supercontinuum spectra when illuminated with femtosecond pulsed light. The design of the fiber geometry in order to reach a nearly ultraflattened normal dispersion behavior is crucial to accomplish the above goal. Our numerical simulations reveal that these supercontinuum sources show high stability and no significant changes are detected even for fairly large variations of the incident pulse. Ministerio de Ciencia e Innovación (TEC2008-05490) and Generalitat Valenciana (GV/2007/043).

Materials scienceNonlinear opticsPhysics::OpticsOctave (electronics)Sensitivity and SpecificityPulse propagation and temporal solitonsOpticsDispersion (optics)Computer SimulationSelf-phase modulationOptical FibersPhotonic crystalÓpticaPhotonsbusiness.industryFemtosecond phenomenaReproducibility of ResultsNonlinear opticsEquipment DesignModels TheoreticalAtomic and Molecular Physics and OpticsSupercontinuumEquipment Failure AnalysisFibersFemtosecondComputer-Aided DesignOptoelectronicsGlassCrystallizationbusinessPhotonic-crystal fiber
researchProduct

Shaping the supercontinuum spectral profile

2009

We numerically recognize a procedure for shaping, at least to some extent, the spectral profile of the supercontinuum (SC) generated by soft-glass photonic crystal fibers (PCFs). As example, we identify a PCF geometry that provides an ultrawide (over an octave) and very flat SC when pumped with pulsed light parameters corresponding to a commercially available Er-doped femtosecond fiber laser.

Materials scienceOptical fiberbusiness.industryPhysics::OpticsNonlinear opticsFemtosecond fiber laserOctave (electronics)Supercontinuumlaw.inventionOptical pumpingOpticslawOptoelectronicsbusinessPhotonic crystalPhotonic-crystal fiber2009 11th International Conference on Transparent Optical Networks
researchProduct

Supercontinuum generation in silicon waveguides based on optical wave-breaking

2014

We theoretically find the third order dispersion that optimizes the spectral broadening induced by optical wave-breaking. It produces supercontinuum spectra spanning beyond 2=3 of an octave in a silicon waveguide pumping at 1550 nm.

Materials scienceSiliconbusiness.industryPhysics::Opticschemistry.chemical_elementBreaking waveOctave (electronics)Supercontinuumlaw.inventionOpticschemistrylawDispersion (optics)OptoelectronicsbusinessSelf-phase modulationWaveguideDoppler broadening
researchProduct

Divided attention in music

2000

Two models have been advanced to account for the apparent ease with which attention can be divided in music: a “divided attention” model postulates that listeners effectively manage to follow two or more melodic lines played simultaneously. According to a “figure-ground model,” the harmonic coherence of Western polyphonies allows a listener to focus on one melody while staying aware of the other melody, which acts as a background. This figure-ground processing compensates for the inability to divide attention. The present study was designed to further investigate these two models. Participants were required to detect melodic errors in two familiar nursery tunes played simultaneously an octa…

MelodyCommunicationFocus (computing)business.industry05 social sciencesHarmonic (mathematics)General MedicineCoherence (statistics)[INFO] Computer Science [cs]050105 experimental psychologyTask (project management)03 medical and health sciences0302 clinical medicineArts and Humanities (miscellaneous)Divided attentionOctaveNA[INFO]Computer Science [cs]0501 psychology and cognitive sciencesbusinessPsychology030217 neurology & neurosurgeryGeneral PsychologyCognitive psychologyInternational Journal of Psychology
researchProduct

Supercontinuum spectral control

2009

Supercontinuum (SC) generation in photonic crystal fibers (PCFs) is a cutting-edge phenomenon extensively studied in recent years [1]. SC has found many scientific and technological applications. The control of the SC spectral characteristics is crucial in most of them. A pioneering attempt in this direction was reported in Ref. [2]. We point out that SC is typically generated by accessing the anomalous dispersion regime of the fiber, i.e., when the group velocity dispersion (GVD) coefficient is lower than zero, β 2 ≪0. The recent achievement of soft-glass PCFs, namely, PCFs made up of a transparent material that shows higher nonlinear response than the widely used fused silica, opens new p…

PhysicsNonlinear systemOpticsbusiness.industryDispersion (optics)BroadbandFiberbusinessOctave (electronics)Photonic-crystal fiberSupercontinuumPhotonic crystalCLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference
researchProduct

Inverse photonic-crystal-fiber design through geometrical and material scalings

2020

Geometrical and material - i.e., external and internal - scaling symmetries are exploited to obtain approximated analytical expressions for the mode effective index, group index, and chromatic dispersion of a scaled fiber. Our results include material refractive index scaling that changes the numerical aperture. First, the analytical expressions are successfully tested with a conventional step index fiber in a broadband range of wavelengths, from 1 to 2 mu m. Then, we establish a procedure to adapt the analytical expressions to photonic crystal fibers (PCFs) and illustrate its application in a triangular PCF with circular holes. These adapted analytical expressions show good agreement with …

Physicsoptical fiberOptical fiberMathematical analysisUNESCO::FÍSICAPhysics::OpticsSoliton (optics)Atomic and Molecular Physics and Opticsdesigning toolsElectronic Optical and Magnetic MaterialsNumerical aperturelaw.inventionlaw:FÍSICA [UNESCO]Dispersion (optics)EFFECTIVE-INDEX METHOD; SUPERCONTINUUM GENERATION; CHROMATIC DISPERSION; SOLITON; OCTAVEElectrical and Electronic EngineeringStep-index profilephotonic crystal fiberRefractive indexScalingPhotonic-crystal fiber
researchProduct

On the construction, comparison, and exchangeability of tuning systems

2015

The aim of this article is to describe mathematically different tuning systems, to study their mathematical properties, and to propose a construction allowing their comparison. In order to reach these goals, we introduce a concept of similarity between tuning systems and then we provide two sufficient conditions for the particular case in which a tuning system generated by an interval and a circulating temperament are compared. Finally, we show by means of an example that, for two tuning systems to be exchangeable, some well-known results determining the suitable number of notes per octave are not enough.

Pythagorean tuningComputational MathematicsInterval (music)Similarity (geometry)Applied MathematicsModeling and SimulationOctaveMathematical propertiesMusical tuningAlgorithmMusicMathematicsJust intonationJournal of Mathematics and Music
researchProduct

Titanium dioxide waveguides for supercontinuum generation and optical transmissions in the near-and mid-infrared

2019

International audience; We report the development of titanium dioxide-based waveguides for applications in the near-and mid-infrared. Thanks to embedded metal grating couplers, we demonstrate error free 10 Gbit/s optical transmissions at 1.55 and 2 µm. With additional management of the dispersion profile, we also demonstrate octave spanning supercontinuum in cm-long TiO2 waveguides.

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]Materials scienceInfraredOptical communication02 engineering and technologySupercontinuum generationOctave (electronics)01 natural sciences010309 opticschemistry.chemical_compound0103 physical sciencesDispersion (optics)Adaptive opticsOptical CommunicationsNonlinear integrated optics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryNonlinear optics021001 nanoscience & nanotechnologySupercontinuumchemistryTitanium dioxideIntegrated optical materialsOptoelectronics0210 nano-technologybusinessTitanium Dioxide waveguides
researchProduct

Octave Spanning Supercontinuum in Titanium Dioxide Waveguides

2018

International audience; We report on the experimental generation of an octave-spanning supercontinuum in a 2.2 cm-long titanium dioxide optical waveguide with two zero dispersion wavelengths. The resulting on-chip supercontinuum reaches the visible wavelength range as well as the mid-infrared region by using a femtosecond fiber laser pump at 1.64 µm.

integrated optics; supercontinuum generation; titanium dioxidePhysics::Optics02 engineering and technologyFemtosecond fiber laser01 natural sciences7. Clean energylcsh:Technologylaw.inventionlcsh:Chemistrychemistry.chemical_compoundlawDispersion (optics)General Materials ScienceInstrumentationlcsh:QH301-705.5ComputingMilieux_MISCELLANEOUSFluid Flow and Transfer Processes[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]General Engineering021001 nanoscience & nanotechnologylcsh:QC1-999Computer Science ApplicationsWavelengthintegrated opticsFemtosecondOptoelectronicsIntegrated optics0210 nano-technologyVisible spectrum[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]Materials scienceAstrophysics::Cosmology and Extragalactic AstrophysicsOctave (electronics)010309 optics0103 physical sciencesSelf-phase modulationsupercontinuum generationbusiness.industrytitanium dioxidelcsh:TProcess Chemistry and TechnologyLaserSupercontinuumchemistrylcsh:Biology (General)lcsh:QD1-999lcsh:TA1-2040Titanium dioxidebusinesslcsh:Engineering (General). Civil engineering (General)Refractive indexlcsh:PhysicsApplied Sciences
researchProduct